• Title/Summary/Keyword: phase interpolation

Search Result 115, Processing Time 0.027 seconds

An 128-phase PLL using interpolation technique

  • Hayun Chung;Jeong, Deog-kyoon;Kim, Wonchan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.181-187
    • /
    • 2003
  • This paper presents an 125MHz, 128-phase phase-locked loop using interpolation technique for digital timing recovery. To reduce the power consumption and chip area, phase interpolation was performed over only selected windows, instead of overall period. Four clocks were used for phase interpolation to avoid the output jitter increase due to the interpolation clock (clock used for phase interpolation) switching. Also, the output clock was fed back to finite-state machine (FSM) where the multiplexer selection signals are generated to eliminate the possible output glitches. The PLL implemented in a $0.25\mu\textrm{m}$ CMOS process and dissipates 80mW at 2.5V supply and occupies $0.84\textrm{mm}^2.

A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding (액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

In-phase Statistical Edge Directed Interpolation based on Windowed MMSE Estimation (MMSE관점에서 위상 정합 방향성 경계 강조 보간법)

  • 임태환;김재호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, we present an improved novel interpolator that performs high quality interpolation on both synthetic and real world images. Its structure, which is based on a four directional linear predictor with equiripple windowed samples and phase matching equalizer, provides edge-directional data interpolation so that sharp and artifacts-free images are obtained at a reasonable computational cost.

  • PDF

ASSESSMENT OF PROPERTY INTERPOLATION METHODS IN LEVEL SET METHOD (레벨셋 기법의 물성 보간 방법에 대한 고찰)

  • Park, J.K.;Oh, J.M.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.283-289
    • /
    • 2009
  • In level set method, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We showed here that the weighted harmonic mean (WHM) method for rate constants of various rate processes, including viscosity, thermal conductivity, electrical conductivity, and permittivity, gives much more accurate results than the WAM method. The selection of interpolation scheme is particularly important in multi-phase electrohydrodynamic problems in which driving force for fluid flow is electrical force exerted on the phase interface. Our analysis also showed that WHM method for both electrical conductivity and permittivity gives not only more accurate, but also more physically realistic distribution of electrical force at the interface. Our arguments are confirmed by numerical simulations of drop deformation under DC electric field.

  • PDF

Image Interpolation Using Phase-Shifted Wavelet Transforms (위상 보정된 웨이블릿 변환을 이용한 영상확대)

  • Kim, Sang-Soo;Eom, Il-Kyu;Kim, Yoo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.387-390
    • /
    • 2005
  • Parameter estimation for the probability model of wavelet coefficients is essential to the wavelet-domain interpolation. However, phase uncertainty, one well-known drawback of the orthogonal wavelet transforms, make it difficult to estimate parameters. In this paper, we exploit a phase shifting matrix in order to improve the accuracy of estimation. Nonlinear modeling to capture the interscale characteristics is also described. The experimental results show that the proposed method outperforms the previous wavelet-domain interpolation method as well as the conventional bicubic method.

  • PDF

IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER (물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장)

  • Cho, H.K.;Lee, H.D.;Park, I.K.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

Performance Analysis of Coding According to the Interpolation filter in Inter layer Intra Prediction of H.264/SVC (H.264/SVC의 계층간 화면내 예측에서 보간법에 따른 부호화 성능 분석)

  • Gil, Dae-Nam;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.225-227
    • /
    • 2009
  • International standard specification, H.264/SVC improved from H.264/AVC, is set up so as to promote free use of huge multimedia data in various channel environments.;H.264/AVC is a international standard speicification for video compression, adopted and commercialized as standard for DMB broadcasting by JVT of ISO/IEC MPEG and ITU-T VCEG. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding. Among prediction technologies, 'inter-layer intra prediction' is to use co-located block of up sampled sublevels as a prediction signal. At this time, application of interpolation is one of the most important factors to determine encoding efficiency. SVC's currently using poly-phase FIR filter of 4-tap and 2-tap respectively to luma components. This paper is written for the purpose of analyzing encoding performance according to the interpolation. For this purpose, we applied poly-phase FIR filter of '2-tap', '4-tap' and '6-tap' respectively to luma components and then measured bit-rate, PNSR and running time of interpolation filter. We're expecting that the analysis results of this paper will be utilized for effective application of interpolation filter. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding.

  • PDF

Joint Estimation of Phase and Frequency Offsets using a Simple Interpolation of a DFT Algorithm in Burst MPSK Transmission (버스트 MPSK 전송에서 시스템 파라미터들의 동시 추정 성능의 개선을 위한 이산 푸리에 변환의 보간기법)

  • Hong, Dae-Ki;Lee, Yong-Jo;Hong, Dae-Sik;Kang, Chang-Eon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.51-57
    • /
    • 2002
  • In this paper, a simple interpolation technique in a frequency domain is proposed for the discrete Fourier transform(DFT) algorithm. Frequency and phase resolution capabilities of the DFT algorithm can be significantly improved by the proposed interpolation technique without increase of a DFT size(the number of points for the DFT). The new technique uses a diving point in amplitude and phase spectrums. As an application, the technique can be used for joint estimation of fine frequency and phase offsets in burst mode digital transmission. Simulation results show that the joint estimator using the technique is robust to estimation errors.

A 2-GHz 8-bit Successive Approximation Digital-to-Phase Converter (2 GHz 8 비트 축차 비교 디지털-위상 변환기)

  • Shim, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.240-245
    • /
    • 2019
  • Phase interpolation is widely adopted in frequency synthesizers and clock-and-data recovery systems to produce an intermediate phase from two existing phases. The intermediate phase is typically generated by combining two input phases with different weights. Unfortunately, this results in non-uniform phase steps. Alternatively, the intermediate phase can be generated by successive approximation, where the interpolated phase at each approximation stage is obtained using the same weight for the two intermediate phases. As a proof of concept, this study presents a 2-GHz 8-bit successive approximation digital-to-phase converter that is designed using 65-nm CMOS technology. The converter receives an 8-phase clock signal as input, and the most significant bit (MSB) section selects four phases to create two sinusoidal waveforms using a harmonic rejection filter. The remaining least significant bit (LSB) section applies the successive approximation to generate the required intermediate phase. Monte-Carlo simulations show that the proposed converter exhibits 0.46-LSB integral nonlinearity and 0.31-LSB differential nonlinearity with a power consumption of 3.12 mW from a 1.2-V supply voltage.

A Study on the Timing Recovery using Peak Detector in Underwater Acoustic Communication (수중음향통신에서 Peak Detector를 갖는 시간동기회복에 관한 연구)

  • Han, Min-Su;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.371-378
    • /
    • 2012
  • This paper presents a timing recovery method using Gardner TED (Timing Error Detector) with a Peak Detector using Parabola Peak Interpolation in underwater acoustic communication. This method will have an eye to improve phase converge speed of timing recovery and reduced amount of Tx data. The OQPSK(Offset Quadrature Phase Shift Keying) modulation technique was considered. The proposed algorithm has faster recovery speed and more accurate than Gardner TED because the sampling values in the proposed algorithm are moved persistingly to maximum or minimum point using parabolic peak interpolation. when simulation performed using Preposed method, it improved BER (Bit Error Rate) performance about 23% And to evaluate the performances of the proposed algorithm the sea trial was performed in the Korean East Sea. And distance of a transmitter-receiver is 3 km each other. As a result, the proposed algorithm outperforms better BER performance about 20% of timing recovery than the Gardner method. Also Proposed method improved converge speed of timing recovery about 1.4 times better than Gardner method.