DOI QR코드

DOI QR Code

A 2-GHz 8-bit Successive Approximation Digital-to-Phase Converter

2 GHz 8 비트 축차 비교 디지털-위상 변환기

  • Shim, Jae Hoon (School of Electronics Engineering, Kyungpook National Unversity)
  • Received : 2019.06.21
  • Accepted : 2019.07.03
  • Published : 2019.07.31

Abstract

Phase interpolation is widely adopted in frequency synthesizers and clock-and-data recovery systems to produce an intermediate phase from two existing phases. The intermediate phase is typically generated by combining two input phases with different weights. Unfortunately, this results in non-uniform phase steps. Alternatively, the intermediate phase can be generated by successive approximation, where the interpolated phase at each approximation stage is obtained using the same weight for the two intermediate phases. As a proof of concept, this study presents a 2-GHz 8-bit successive approximation digital-to-phase converter that is designed using 65-nm CMOS technology. The converter receives an 8-phase clock signal as input, and the most significant bit (MSB) section selects four phases to create two sinusoidal waveforms using a harmonic rejection filter. The remaining least significant bit (LSB) section applies the successive approximation to generate the required intermediate phase. Monte-Carlo simulations show that the proposed converter exhibits 0.46-LSB integral nonlinearity and 0.31-LSB differential nonlinearity with a power consumption of 3.12 mW from a 1.2-V supply voltage.

Keywords

HSSHBT_2019_v28n4_240_f0001.png 이미지

Fig. 1. Concept of phase interpolation

HSSHBT_2019_v28n4_240_f0002.png 이미지

Fig. 2. Nonlinearity of phase interpolation

HSSHBT_2019_v28n4_240_f0003.png 이미지

Fig. 3. Tournament-style phase interpolation.

HSSHBT_2019_v28n4_240_f0004.png 이미지

Fig. 4. Successive approximation phase interpolation.

HSSHBT_2019_v28n4_240_f0005.png 이미지

Fig. 5. Overall structure of the digital-phase converter

HSSHBT_2019_v28n4_240_f0006.png 이미지

Fig. 6. Phase selection octant.

HSSHBT_2019_v28n4_240_f0007.png 이미지

Fig. 7. Principle of harmonic rejection.

HSSHBT_2019_v28n4_240_f0008.png 이미지

Fig. 8. Analog MUX and harmonic rejection filter.

HSSHBT_2019_v28n4_240_f0009.png 이미지

Fig. 9. The phase interpolator consisting of analog MUX and inverter-based summing amplifiers.

HSSHBT_2019_v28n4_240_f0010.png 이미지

Fig. 10. Simulated INL/DNL.

HSSHBT_2019_v28n4_240_f0011.png 이미지

Fig. 11. Distribution of DNL over process variations.

HSSHBT_2019_v28n4_240_f0012.png 이미지

Fig. 12. Settling behavior of the output phase.

Table 1. Performance summary

HSSHBT_2019_v28n4_240_t0001.png 이미지

References

  1. R. B. Staszewski, J. L. Wallberg, S. Rezeq, C.-M. Hung, O. E. Eliezer, S. K. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, "All digital PLL and transmitter for mobile phones", IEEE J. Solid-State Circuits, Vol. 40, No. 12, pp. 2469-2482, 2005. https://doi.org/10.1109/JSSC.2005.857417
  2. R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, "1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS", IEEE Trans. Circuits Syst. II Express Briefs, Vol. 53, No. 3, pp. 1579-1583, 2006.
  3. R. K. Nandwana, T. Anand, S. Saxena, S.-J. Kim, M. Talegaonkar, A. Elkholy, W.-S. Choi, A. Elshazly, and P. K. Hnumolu, "A calibration-free fractional-N ring PLL using hybrid phase/current-mode phase interpolation method", IEEE J. Solid-State Circuits, Vol. 50, No. 4, pp. 882-895, 2015. https://doi.org/10.1109/JSSC.2014.2385756
  4. M.-S. Chen, Y.-N. Shih, C.-L. Lin, H.-W. Hung, and J. Lee, "A fully-integrated 40-Gb/s transceiver in 65-nm CMOS technology", IEEE J. Solid-State Circuits, Vol. 47, No. 3, pp. 627-640, 2012. https://doi.org/10.1109/JSSC.2011.2176635
  5. P. K. Hanumolu, V. Kratyuk, G.-Y. Wei, and U.-K. Moon, "A sub-picosecond resolution 0.5-1.5 GHz digital-to-phase converter", IEEE J. Solid-State Circuits, Vol. 43, No. 2, pp.414-424, 2008. https://doi.org/10.1109/JSSC.2007.914287
  6. M.-S. Chen, A. A. Hafez, and C.-K. K. Yang, "A 0.1-1.5 GHz 8-bit inverter-based digital-to-phase converter using harmonic rejection", IEEE J. Solid-State Circuits, Vol. 48, No. 11, pp. 2681-2692, 2013. https://doi.org/10.1109/JSSC.2013.2274892
  7. A. T. Narayanan, M. Katsuragi, K. Kimura, S. Kondo, K. K. Tokgoz, K. Nakata, W. Deng, K. Okada, and A. Matsuzawa, "A fractional-N sub-sampling PLL using a pipelined phaseinterpolator with an FoM of-250 dB", IEEE J. Solid-State Circuits, Vol. 51, No. 7, pp. 1630-1640, 2016. https://doi.org/10.1109/JSSC.2016.2539344
  8. L. Rodoni, G. Buren, A. Huber, M. Schmatz, and H. Jackel, "A 5.75 to 44 Gb/s quarter rate CDW with data rate selection in 90 nm bulk CMOS", IEEE J. Solid-State Circuits, Vol. 44, No. 7, pp. 1927-1941, 2009. https://doi.org/10.1109/JSSC.2009.2021913