• Title/Summary/Keyword: phase field model

Search Result 575, Processing Time 0.034 seconds

Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves (규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Kwon, Ki-Jo;Cho, Sung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

Concept Analysis of Stress in Siblings of Patients with Childhood Cancer (소아암 환자 형제자매의 스트레스 개념분석)

  • Yu, Juyoun;Bang, Kyung-Sook
    • Child Health Nursing Research
    • /
    • v.23 no.2
    • /
    • pp.190-198
    • /
    • 2017
  • Purpose: This study was conducted to define the concept of stress in siblings of childhood cancer patients. Methods: The hybrid model was used to perform the concept analysis of stress in childhood cancer patients' siblings. Through reviews of 16 studies in the theoretical phase and interviews with 20 siblings in the field phase, the derived results were brought together in the integration phase. Results: The concept of stress in siblings of patients with childhood cancer was found to have 6 attributes and 28 indicators in 3 domains. Personal factors included 2 attributes (fear about childhood cancer and immature coping skills), and family factors had 2 attributes (changes in relationships with family and changes in family environment), social factors had 2 attributes (changes in relationships with friends and in the school experience, and insufficient social support). Conclusion: The stress of siblings of childhood cancer patients was defined as a state of tension associated with personal, family, social factors that can be related to their siblings' childhood cancer. The findings in this study provide the base for the development of a tool for measuring siblings' stress and/or the development of nursing programs for these siblings.

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.

A Study on the development of Construction Field Management Model based on BIM (BIM기반 건설현장 관리모델 개발에 관한 연구)

  • Jun, Young-Woong;Lee, Myoung-Sik
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.9 no.3
    • /
    • pp.69-76
    • /
    • 2009
  • The importance of efficient construction site management has been growing as the amount of construction information increases which is used in the growing construction site. Accordingly in this study, we are trying to find out the application situation and possibility of BIM through theoretical examination and domestic & overseas case study of BIM and we are trying to suggest the way of efficient construction site management formulation through implementation phase-oriented and cooperation entity-oriented analysis in the construction site. We found out that it was possible to minimize time loss and financial loss by visualizing 2D drawings through 3D modeling of target building by applying BIM and that it was possible to improve accuracy of budget planning with quantitative information of 3D model, to plan construction process with more confidence due to accurate architectural information of drawings and quantitative information, and to manage cost and quality through process management based on construction information acquired by BIM including object information by part. It is concluded that we can improve efficiency of construction management between field and each cooperating entity by integrating and linking BIM information through this process.

  • PDF

Normal Mode Studies for Solids HF, HCl and Polyethylene According to the Pseudolattice Method

  • Chang, Man-Chai;John, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 1985
  • Normal modes of solids HF, HCl and polyethylene having the exciting spectrometric phenomena have been evaluated by taking the lowest temperature phase of these species in the solid. The solids HF and HCl have the same space group as C$_{2}{\nu}$, and polyethylene has a space group with D$_{2h}$. The normal modes were obtained by the valence force field with modified force constants and a quantitative description of the normal mode is adjusted by the potential energy distribution (PED). From the PED, the most fittable force constants are also obtained. We have intended to calculate the normal modes by using the smallest size of the model and the simple computational process. To remove the edge effects being occurred in constructing the single cluster model, different from the boundary condition being generally used up to now, the idea of pseudolattice method being successfully applied to MO calculations of solid was extended to normal mode analysis in order to give the same environment for all moecules in a chosen cluster. By using the above valence force field and boundary condition, we obtain the assigned frequencies and compare those results with the results obtained by others.

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Calculation of Magnetic Fields under 3 Phase Power Lines with Branch Lines (분기선로가 있는 3상 전력선로하의 전자파 자계 계산)

  • Kang, Dae-Ho;Lee, Yong-Sik;Kim, Bu-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.110-119
    • /
    • 2009
  • In this study magnetic fields near electric power lines with branch lines which have a arbitrary angle were derived and formulated by dipole antenna theory and could be calculated easily using the formula. It seems that those formula could be applicable to the consideration of magnetic fields during the design of distribution lines with branch lines. As an example those formulated equations on elements of magnetic fields were applied to a model of 3 phase distribution lines with branch lines and calculated by Matlab programs and the results were presented The analyzed results are follows. The resultant magnetic field is dominated by the componant By all over y-axis in the case of the smaller branched angle $\alpha$ and the lower observed point z. In case of ${\alpha}=\frac{\pi}{2}$[rad], the resultant field is affected by the componant Bx. The resultant field is dominated by the componant Bz at the vicinity of the power lines and it shows very large value at the branch line position of y-axis in case of ${\alpha}>\frac{\pi}{2}$.

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON;YI YU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.151-157
    • /
    • 2004
  • It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.

Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development (월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발)

  • Lim, Doo-Hyun;Kim, Jee-Yeon;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • An integrated model for groundwater flow and radionuclide transport analyses is being developed incorporating six underground silos, an excavated damaged zone (EDZ), and fractured host rock. The model considers each silo as an engineered barrier system (EBS) consisting of a waste zone comprising waste packages and disposal container, a buffer zone, and a concrete lining zone. The EDZ is the disturbed zone adjacent to silos and construction & operation tunnels. The heterogeneity of the fractured rock is represented by a heterogeneous flow field, evaluated from discrete fractures in the fractured host rock. Radionuclide migration through the EBS in silos and the fractured host rock is simulated on the established heterogeneous flow field. The current model enables the optimization of silo design and the quantification of the safety margin in terms of radionuclide release.

Influences of Viscous Losses and End Effects on Liquid Metal Flow in Electromagnetic Pumps

  • Kim, Hee-Reyoung;Seo, Joon-Ho;Hong, Sang-Hee;Suwon Cho;Nam, Ho-Yun;Man Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.233-240
    • /
    • 1996
  • Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current ( u x B ) generated by the liquid metal movement across the magnetic field rather than the one (E) produced by externally applied magnetic fields by three-phase winding currents. It is concluded that since the influences of the end effects in addition to viscous losses are extensive particularly in high-velocity operations of the EM pumps, it is necessary to find ways to suppress them, such as proper selection of the pump parameters and compensation of the end effects.

  • PDF