• Title/Summary/Keyword: phase characteristic

Search Result 1,725, Processing Time 0.027 seconds

SIMULATION OF CORE MELT POOL FORMATION IN A REACTOR PRESSURE VESSEL LOWER HEAD USING AN EFFECTIVE CONVECTIVITY MODEL

  • Tran, Chi-Thanh;Dinh, Truc-Nam
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.929-944
    • /
    • 2009
  • The present study is concerned with the extension of the Effective Convectivity Model (ECM) to the phase-change problem to simulate the dynamics of the melt pool formation in a Light Water Reactor (LWR) lower plenum during hypothetical severe accident progression. The ECM uses heat transfer characteristic velocities to describe turbulent natural convection of a melt pool. The simple approach of the ECM method allows implementing different models of the characteristic velocity in a mushy zone for non-eutectic mixtures. The Phase-change ECM (PECM) was examined using three models of the characteristic velocities in a mushy zone and its performance was compared. The PECM was validated using a dual-tier approach, namely validations against existing experimental data (the SIMECO experiment) and validations against results obtained from Computational Fluid Dynamics (CFD) simulations. The results predicted by the PECM implementing the linear dependency of mushy-zone characteristic velocity on fluid fraction are well agreed with the experimental correlation and CFD simulation results. The PECM was applied to simulation of melt pool formation heat transfer in a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lower plenum. The study suggests that the PECM is an adequate and effective tool to compute the dynamics of core melt pool formation.

Analysis of HVDC Inverter and Application of Objective Functions for the Optimal Filter Design (직류송전 인버터의 필터 최적설계를 위한 해석 및 목적함수의 선정)

  • 오성철;정교범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.82-89
    • /
    • 2001
  • This paper proposes several methods to analyze dynamic and static characteristics of HVDC inverter system. The characteristic analysis is essential of the controller and filter design of the HVDC inverter system. Dynamic characteristic can be analyzed with EMTP simulation and static characteristic can be obtained by solving newly proposed load flow equation which includes the filter and load characteristic. New simple per-phase-equivalent circuit is also proposed. In this circuit, HVDC inverter is considered as a current source depending on the on-off status of switch. Dynamic and static characteristic can be analyzed by the proposed per-phase-equivalent circuit. For the optimal filter design, various performance criteria are proposed. The performance index, based on the per-phase-equivalent circuit, is calculated. Voltage harmonics and filter power loss are selected as criteria. Optimization procedure is explained to find optimal passive filter parameters.

  • PDF

Preparation of PVDF Membrane by Thermally-Induced Phase Separation

  • Heo, Chi-Haeng;Lee, Kyung-Mo;Kim, Jin-Ho;Kim, Sung-Soo
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • PVDF membrane formation via TIPS was performed for PVDF/DBP and PVDF/DMP systems. PVDF/DBP system showed solid-liquid phase separation behavior, while PVDF/DMP system has liquid-liquid phase separation characteristic as well as solid-liquid phase separation characteristic. PVDF contents and cooling conditions had great influence on structure, and the effects of each parameter were examined. Spherulitic structure was obtained due to the dominant PVDF crystallization. Diluent rejected to the outside of spherulite occupied the surface of the PVDF spherulites to result in the microporous spherulite formation and micro-void between spherulites. PVDF/DMP system had competitive solid-liquid and liquid-liquid phase separation depending on the cooling path.

Speed control of single-phase induction motor using phase control and integral cycle control (위상제어와 주기 제어를 이용한 단상유도기의 속도 제어)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Cho, Young-Rae;Choi, Chul-Young;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.190-192
    • /
    • 2003
  • Single phase induction motor is used widely in various electronic appliances by advantage that is simple structure and a low-cost. As high starting torque characteristic is mostly used capacitor run single phase induction motor. In this paper, it is applied that speed controller of Capacitor run single phase induction motor of digital way used general microprocessor, and phase control method used average voltage. Torque get non-linearity to domain of low speed. Unstable domain of low speed is applied of integral cycle control. so it is wide that Speed control domain. Also, PID controller is used to improve characteristic of fast response. The validity of proposed method is verified from simulation and experiment result

  • PDF

Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow (합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구)

  • 차경옥;김재근;양회준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 영구자석형 유도동기기의 정상상태 특성해석)

  • Kang, Gyu-Hong;Nam, Hyuk;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

Dynamic Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor by Parameter Variation (단상 유도형 동기전동기의 파라미터 변화에 따른 동특성 해석)

  • Oh, Se-Young;Jung, Dae-Sung;Lim, Seung-Bin;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.763-764
    • /
    • 2006
  • In this paper, optimized model was designed for the starting characteristic of the Single-Phase Line-Start Permanent Magnet Synchronous Motor by using the Design of Experiment. A field pole angle, thickness and distance from center axis of permanent magnet were selected as design factor. We executed the transient state characteristic analysis of 8 test models. The transient state characteristic analysis was executed by using the 2 dimensional Finite Element Method and the Time Difference Method. We checked the fact that the selected design factor affected starting characteristic of the Line-Start Permanent Magnet Synchronous Motor. Depend on this result we found the optimized design point by using the response optimization.

  • PDF

New Constitutive Equations for Asphalt Binder Fluids (아스팔트바인더 유체를 위한 새로운 특성방정식)

  • Huh, Jung-Do
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.57-67
    • /
    • 2005
  • Almost most of literatures treat behaviors of asphalt binders as a homogeneous single-phase fluid, but this generalization turns out to be a serious mistake. This study introduces all the characteristic equations for asphalt binders, which are modified or unmodified. Especially, characteristic equations for a unhomogeneous multi-phase fluid for modified asphalts is first time proposed. Characteristics of each equations introduced are explained by employing dynamic shear testing data actually measured for specific asphalt binders. Differences of moving behaviors and characteristic equations between a homogeneous single-phase and a unhomogeneous multi-phase fluid are emphasized. These differences help us understand which characteristic equations must be used for a given asphalt fluid and what kinds of properties must be investigated for analysis of a specific asphalt binder. Results of this study provide how to analyse modified and unmodified asphalts, and informations necessary for binder grading.

  • PDF

A Novel Calibration Method Using Zadoff-Chu Sequence and Its FPGA Implementation (Zadoff-Chu sequence를 이용한 실시간 Calibration 알고리즘과 FPGA 구현)

  • Jang, Jae Hyun;Sun, Tiefeng;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.59-65
    • /
    • 2013
  • This paper presents a novel calibration method for a base station system adopting an antenna array. The proposed technique utilizes Zadoff-Chu sequence, which is included in the LTE pilot signal periodically, in order to compute the phase characteristic of each antenna channel. As the Zadoff-Chu sequence exhibits an excellent autocorrelation characteristic, it is possible for the receiving base station to retrieve the Zadoff-Chu sequence transmitted from each mobile terminal. In addition, we can obtain the phase characteristic of each antenna channel, which is the ultimate goal of the calibration procedure. The proposed calibration algorithm has been implemented using an FPGA (Field Programmable Gate Array). We have applied the proposed algorithm to an array consisting of 2 antenna elements for simplicity. the phase value implied to the first and second antenna path is very accurately calculated from the proposed procedure. From the experimental test, the proposed method provides accurate calibration results.

A REAL GAS SOLUTION ALGORITHMS FOR MULTI-PHASE FLOW ANALYSIS (다상 유동 해석을 위한 압축성 실제기체 해법)

  • Han S.H.;Choi J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.187-194
    • /
    • 2005
  • For the analysis of compressible multi-phase and real gas flows, characteristic form of Roe's Riemann solver was derived using real gas equation of state. It was extended to multi component reactive system considering variable specific heat. From this study, it is known that some correction should be made for the use of existing numerical algorithm. 1) Sonic speed and characteristic variable should be corrected with real gas effect. 2) Roe's average was applicable only with the assumption of constant properties. 3) Artificial damping term and characteristic variables should be corrected but their influences may not be significant.

  • PDF