• 제목/요약/키워드: phase change heat transfer

검색결과 263건 처리시간 0.024초

저온의 고-액상변화 모듈 용기의 배열에 따른 축냉시스템의 수치해석 (Numerical Analysis of Cold Storage System with Array of Solid-Liquid Phase Change Module)

  • 문수범
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.577-582
    • /
    • 2015
  • 본 논문은 육해상의 운송장치에 축냉시스템을 적용시키기 위한 기초 연구이다. 또한, 축냉재의 고액상변화에 대한 수치해석을 수행한 연구이다. 수치해석법으로는 유한차분법(Finite-Difference Method)을 이용하였으며, 1차원 비정상의 상태를 가정하여 계산하였다. 또한 용기는 직사각형의 구형용기로 가정하여 대칭의 조건을 이용하였다. 축냉을 목적으로 사용하는 열매체는 염화칼슘 수용액($CaCl_2$) 30wt%의 물성치를 사용하여 계산을 수행하였다. 계산에 영향을 미치는 요소로는 냉동고의 냉기 온도 및 냉기 유속이 있으며, 축냉재를 싸고 있는 용기는 플라스틱으로 가정하였다. 본 수치해석에서 경계층의 두께는 냉기의 속도 증가와 함께 얇게 되고 축열시간도 짧아지는 것을 확인할 수 있었다. 그리고 냉기의 유속이 빨라질수록 열전달이 촉진되어 축냉용기 전면부에서의 온도가 낮아짐을 알았다. 축냉용기의 후면부에서는 경계층이 두꺼워져 열전달이 전면부에 비해 작아짐을 알았다.

도시 열섬현상 저감을 위한 MPCM 적용 축열도료 제조 및 열적성능 평가 (Preparation and Thermal Performance Evaluation of Heat Storage paint with MPCM for Reducing Urban Heat Island Effect)

  • 정수광;강유진;위승환;장성진;김수민
    • 한국태양에너지학회 논문집
    • /
    • 제35권4호
    • /
    • pp.17-24
    • /
    • 2015
  • The formation of heat islands causes high energy demand for space cooling and peak cooling loads in conditioned buildings. High-temperature fluctuations on a building roof may cause mechanical stress and increase surface deterioration. Thermal energy storage (TES) systems using microencapsulated phase-change materials (MPCMs) have been recognized as one of the most advanced energy technologies for enhancing the energy efficiency and sustainability of buildings. In this study, we prepared MPCM/paint composites for mitigating the heat island effect and reducing peak temperature. In addition, we carried out thermal and physical analysis of prepared MPCM composite samples by means of SEM, FTIR spectroscopy, DSC, and TGA. Further, we evaluated the dynamic heat transfer performance of heat-storage tiles painted with 10 g of heat-storage paint. From the obtained results, we deduced that MPCM/hydrophilic paint composites are more applicable to various fields, including the building sector, than MPCM/hydrophobic paint composites. On the basis of SEM and FTIR spectroscopy results, we concluded that materials with hydrophilic properties are more compatible with MPCMs than those with hydrophobic properties. In addition, DSC analysis results revealed that MPCM/hydrophilic paint composites have better compatibility, higher latent heat capacity, and better thermal properties than other composites. TGA results showed that hydrophilic-paint-based composites have higher thermal durability than hydrophobic-paint-based composites. Finally, a lot of MPCM-loaded heat-storage tiles showed lower peak temperatures at all measurement positions.

파이프라인이 매설된 폐쇄형 동결토의 동결심도 결정 (Determination of the Frozen Penetration Depth of a Freezing Soil Medium including a Pipeline in a Closed System)

  • 송원근
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.451-458
    • /
    • 2004
  • 본 연구는 동결토의 동결심도 및 매설된 파이프라인의 온도분포를 예측하기 위하여 유효열용량 개념 반영한 수치해석 모델의 개발에 초점이 맞추어져 있다. 이를 위하여 저자는 사용코드인 ANAQUS를 활용하여 파이프라인이 매설된 폐쇄형 시스템의 화강 동결토에 대하여 비정상 열전달 수치해석을 수행하였다. 제안된 수치해석 모델은 Frozen Fringe에서 간극수의 상변화 효과가 반영되었다. 제안된 수치해석 모델과 실내 실험으로부터 얻어진 결과들을 비교함으로써 유효열용량 모델의 적용성을 검증하였다.

잠열축열요소의 열전달에 관한 컴퓨터 시뮬레이션 (Computer Simulation for Heat Transfer Analysis of Latent Heat Storage Units)

  • 류영선;송현갑;조한근
    • Journal of Biosystems Engineering
    • /
    • 제17권4호
    • /
    • pp.336-343
    • /
    • 1992
  • In this study, to obtain basic information for the design of a latent heat storage system, (1) the cylindrical type and the rectangular type of latent heat storage elements were designed, (2) the finite element method was adopted for the prediction of temperature profile of phase change material in heating and cooling process, and (3) experiments were performed to verify the numerical solutions, and then (4) the optimum size of latent heat storage units was predicted by the computer simulation. The results could be summarized as follows : (1) In cooling process, the predicted temperatures of latent heat storage units by computer simulation were in good agreement with measured. (2) The effective diameter of cylindrical element was observed to be 28 mm and the effective thickness of rectangular element was observed to be 21 mm.

  • PDF

직립전열관에서의 유체진동에 관한 연구 (A study of flow oscillations in a upright heated pipe)

  • 박진길;진강규;오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.85-99
    • /
    • 1984
  • The stability of the two-phase flow in a heated channel is of great importance in the design and operation of the boilers and light water nuclear reactors, because it can cause flow oscillations and lead to a violation of thermal limits with resultant overheating of the channels and cladding. This paper presents a systematic evaluation to the variation effects of the basic four (4) dimensionless parameters in a homogeneous equilibrium model. The flow stability is examined on the ground of static characteristic curves. The complicated transfer function of flow dynamics which gives consideration to the transport lag of density wave is derived, and the transient flow stability is analysed by applying the Nyquist stability criterion in control engineering. The analysis results summed up as follows 1. The coolant flow becomes stable in large friction number and specific flow, while it is unstabale in small friction number and flow. 2. Large phase-change number and Froude number destabilize the two-phase flow, but small numbers stabilize it. The effect to variation of phase-change number is more dominant compared with Froude number. 3. The dynamic analysis is required to hold the sufficient safety of heated channels since only static results does not keep it. The special attention could be payed in the design and operation of heat engines, because the unstaable region exists within the stable boundary at small and middle phase-change number and Froude number.

  • PDF

수평관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구 (External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on a Smooth Tube)

  • 유길상;황지환;박기정;정동수
    • 설비공학논문집
    • /
    • 제17권8호
    • /
    • pp.729-735
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) were measured on a horizontal smooth tube at the saturated vapor temperature of $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ for R22, R410A, R407C, and R134a with the wall subcooling of $3\~8^{\circ}C$. The HTCs of all refrigerants are the highest at $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ in order. This trend is due to its excellent thermodynamic properties of the liquid phase. The measured data of HTCs were compared with the calculated ones by Nusselt's equation for a smooth tube. Measured HTCs of R22, R134a, R410A are $4.2\~7.5\%$ higher than prediction respectively while those of R407C are $15.6\~28.9\%$ lower than the prediction.

설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011)

  • 한화택;이대영;김서영;최종민;백용규;김수민
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

휜이 부착된 수직(垂直) 냉각관(冷却管)에서의 열전달(熱傳達)에 관(關)한 실험적(實驗的)인 연구(硏究) (An experimental study on heat transfer of finned vertical cooling tube)

  • 송하진;이채문;임장순
    • 태양에너지
    • /
    • 제4권2호
    • /
    • pp.43-49
    • /
    • 1984
  • Experiments were performed to study freezing on a finned vertical tube when either conduction in the solid or natural convection in a liquid controls the heat transfer. Conduction is the controlling mode when the liquid is at its fusion temperature, whereas natural convection controls when the liquid temperature is above the fusion value. The liquid was housed in a cylinderical containment vessel whose surface was maintained at a uniform, time-invariment temperature during a data run, and the freezing occurred on a finned vertical tube positioned along the axis of the vessel. The phase change medium was n-octacosan, a paraffin which freezes at about $61^{\circ}C$. For conduction-controlled freezing, the enhancement of the frozen mass due to finning is greatest when the frozen layer is thin and decrease as the layer grows thicker. The degree of enhancement is generally less than the surface area ratio of the finned and unfinned tube.

  • PDF

유한체적법과 유한요소법을 이용한 응고과정에서의 열응력해석 (Analysis of Thermal Stresses During Solidification Process Using FVM/FEM Techniques)

  • 이진호;황기영
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1009-1018
    • /
    • 1994
  • An attempt is made to develop a kind of hybrid numerical method for computations of the thermal stresses during a solidification process. In this algorithm, the phase-change heat transfer analysis is perrformed by a finite volume method(FVM) and the thermal stress analysis in a solidifying body by a finite element method(FEM). The temperatures at the grid points calculated in the heat transfer analysis are transferred to those of gauss points in elements by a bi-cubic surface patch technique for the thermal stress analysis. A hyperbolic-sine constitutive law is used to prescribe the inelastic strain rate of material. Results for the unidirectional solidification process of a pure aluminum are compared with those of others and shows good agreement.

금속 우라늄봉의 연속주조공정에 대한 열전달 및 응고해석 (Numerical Analysis of Heat Transfer and Solidification in the Continuous Casting Process of Metallic Uranium Rod)

  • 이주찬;이윤상;오승철;신영준
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.80-88
    • /
    • 2000
  • Continuous casting equipment was designed to cast the metallic uranium rods, and a thermal analysis was carried out to calculate the temperature and solidification profiles. Fluid flow and heat transfer analysis model including the effects of phase change was used to simulate the continuous casting process by finite volume method. In the design of continuous casting equipment, the casting speed, pouring temperature and cooling conditions should be considered as significant factors. In this study, the effects of casting speed, pouring temperature, and air gap between the uranium and mold were investigate. The results represented that the temperature and solidification profiles of continuous casting equipment varied with the casting speed, pouring temperature, and air gap.

  • PDF