• 제목/요약/키워드: pexiderized functional equation

검색결과 10건 처리시간 0.021초

STABILITY OF PEXIDERIZED JENSEN AND JENSEN TYPE FUNCTIONAL EQUATIONS ON RESTRICTED DOMAINS

  • Choi, Chang-Kwon
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.801-813
    • /
    • 2019
  • In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of pexiderized Jensen functional equation $$2f(\frac{x+y}{2})-g(x)-h(y)=0$$ and pexiderized Jensen type functional equations $$f(x+y)+g(x-y)-2h(x)=0,\\f(x+y)-g(x-y)-2h(y)=0$$ on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.

STABILITY OF PARTIALLY PEXIDERIZED EXPONENTIAL-RADICAL FUNCTIONAL EQUATION

  • Choi, Chang-Kwon
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.269-275
    • /
    • 2021
  • Let ℝ be the set of real numbers, f, g : ℝ → ℝ and �� ≥ 0. In this paper, we consider the stability of partially pexiderized exponential-radical functional equation $$f({\sqrt[n]{x^N+y^N}})=f(x)g(y)$$ for all x, y ∈ ℝ, i.e., we investigate the functional inequality $$\|f({\sqrt[n]{x^N+y^N}})-f(x)g(y)\|{\leq}{\epsilon}$$ for all x, y ∈ ℝ.

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

  • Lee, Young-Whan
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.193-198
    • /
    • 2012
  • We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation $$f(x+y)=e(x,y)g(x)h(y)$$. From this result, we have the superstability of the exponential functional equation $$f(x+y)=f(x)f(y)$$.

THE STABILITY OF PEXIDERIZED COSINE FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.103-114
    • /
    • 2008
  • In this paper, we investigate the superstability problem for the pexiderized cosine functional equations f(x+y) +f(x−y) = 2g(x)h(y), f(x + y) + g(x − y) = 2f(x)g(y), f(x + y) + g(x − y) = 2g(x)f(y). Consequently, we have generalized the results of stability for the cosine($d^{\prime}Alembert$) and the Wilson functional equations by J. Baker, $P.\;G{\check{a}}vruta$, R. Badora and R. Ger, and G.H. Kim.

  • PDF

ON AN L-VERSION OF A PEXIDERIZED QUADRATIC FUNCTIONAL INEQUALITY

  • Chung, Jae-Young
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.73-84
    • /
    • 2011
  • Let f, g, h, k : $\mathbb{R}^n{\rightarrow}\mathbb{C}$ be locally integrable functions. We deal with the $L^{\infty}$-version of the Hyers-Ulam stability of the quadratic functional inequality and the Pexiderized quadratic functional inequality $${\parallel}f(x + y) + f(x - y) -2f(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ $${\parallel}f(x + y) + g(x - y) -2h(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ based on the concept of linear functionals on the space of smooth functions with compact support.

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

STABILITY OF HOMOMORPHISMS AND DERIVATIONS IN PROPER JCQ*-TRIPLES ASSOCIATED TO THE PEXIDERIZED CAUCHY TYPE MAPPING

  • Najati, Abbas;Eskandani, G. Zamani;Park, Choon-Kil
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.45-60
    • /
    • 2009
  • In this paper, we investigate homomorphisms in proper $JCQ^*$-triples and derivations on proper $JCQ^*$-triples associated to the following Pexiderized functional equation $$f(x+y+z)=f_0(x)+f_1(y)+f_2(z)$$. This is applied to investigate homomorphisms and derivations in proper $JCQ^*$-triples.

GENERALIZED HYERES{ULAM STABILITY OF A QUADRATIC FUNCTIONAL EQUATION WITH INVOLUTION IN QUASI-${\beta}$-NORMED SPACES

  • Janfada, Mohammad;Sadeghi, Ghadir
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1421-1433
    • /
    • 2011
  • In this paper, using a fixed point approach, the generalized Hyeres-Ulam stability of the following quadratic functional equation $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=3(f(x)+f(y)+f(z))$ will be studied, where f is a function from abelian group G into a quasi-${\beta}$-normed space and ${\sigma}$ is an involution on the group G. Next, we consider its pexiderized equation of the form $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=g(x)+g(y)+g(z)$ and its generalized Hyeres-Ulam stability.