• Title/Summary/Keyword: petrology

Search Result 233, Processing Time 0.027 seconds

Mineralogical Properties and Heavy Metal Removal Efficiency of Shells (패각의 광물학적 특성 및 중금속 제거 효율 평가)

  • Song, Hye Won;Kim, Jae Min;Kim, Young Hun;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.387-396
    • /
    • 2022
  • In this study, the removal efficiencies of heavy metals were evaluated using cockle, abalone, and scallop shells. Cockle, abalone, and scallop are composed mainly of aragonite, aragonite, and calcite, and calcite, respectively. The specific surface area of each shell varies from 2.7241 m2/g to 4.5481 m2/g and the order of that is scallop > abalone > cockle. All shells of cockle, abalone, and scallop had no As removal effect by adsorption and precipitation as pH increased. Pb was removed by all shell samples at initial reaction. Although the removal efficiency of Cd and Zn were depending on the reaction medium, that was increased in order of scallop > abalone > cockle. Heavy metal removal efficiency tends to be slightly higher for heated samples than with the raw materials, and higher as the specific surface area is larger.

A Study of Practical and Optimized Mineral Quantification (실용적이고 최적화된 광물정량분석법 연구)

  • Son, Byeong-Kook;An, Gi-O
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.227-239
    • /
    • 2021
  • A practical and effective method of X-ray powder diffraction analysis was investigated for quantitative analysis of the mineral content of natural samples. Sample mounting experiments were conducted to select the best randomly oriented powder sample mount. A comparative experiment was also made between a reference intensity ratio (RIR) method, which compares a single peak intensity with standard material, and the Rietveld method, which calculates a full X-ray diffraction pattern, to search for the effective method of mineral quantification. In addition, samples containing amorphous minerals were quantitatively analyzed by the Rietveld method and the efficiency was reviewed. As a result of the study, the optimal random orientation could be reached by the side mounting method. The Rietveld method using the full pattern of X-ray diffraction was more suitable for mineral quantitative analysis, rather than the RIR method using a specific peak. However, either method could depend on the analyst's experience in addition to analytical technique. Moreover, amorphous minerals can be quantitatively analyzed by the Rietveld method, and the analysis results make the geological analysis possible.

Petrological Study on the Mantle Xenolith from Dongsuak Crater, Jeju Island (제주도 동수악 분화구에서 산출되는 맨틀포획암의 암석학적 연구)

  • Kil, Youngwoo;Hong, Sei Sun;Lee, Choon Oh;Ahn, Ung San
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Dongsuak crater, located in the mid-mountainous region of Jeju Island, is located at an altitude of about 700 m, and the newly discovered Dongsuak spinel peridotites was enclosed in Dongsuak alkaline basalt. The Dongsuak spinel peridotites are composed of olivine, orthopyroxene, clinopyroxene, and spinel with porphyroclastic texture under the an equilibrium state. The variations of mineral major and trace compositions indicates that the Dongsuak spinel peridotites originate at depth from 66 to 88 km under an equilibrium temperature of about 960℃~1068℃. The Dongsuak spinel peridotites have been undergone about 1~3% fractional melting. The LREE-enriched characteristics indicate that the Dongsuak spinel peridotites have been undergone cryptic metasomatism by silicate melt without new minerals.

Petrology and geochemistry of the Seoul granitic batholith (서울 화강암질 저반의 암석학 및 지구화학)

  • Kwon, S.T.;Cho, D.L.;Lan, C.Y.;Shin, K.B.;Lee, T.;Mertzman, S.A.
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.109-127
    • /
    • 1994
  • We report field relationship, petrography and major and trace element chemistry for the central part of the Seoul granitic bathlith of Jurassic age occurring in the Kyonggi massif. The batholith consists mainly of biotite granite (BG) and garnet biotite granite (GBG) with minor tonalite-quartz diorite and biotite granodiorite with or without hornblende. The mode data, along with the those reported by Hong (1984) for the biotite granite (south-BG) in the southern part of the batholith, indicate that the many of BGs and majority of GBG and south-BG are leucocratic. Major element data indicate that these predominant rocks of the batholith are peraluminous. Variation trends in Harker diagrams for the major and trace elements suggest that the BG and GBG are not related by a simple crystal fractionation process. The same is true between the central (BG and GBG) and the southern (south-BG) parts of the batholith, suggesting that the central and southern parts of the Seoul batholith may consist of three separate intrusions. Tectonic discriminations using major and trace element data and the age of emplacement suggest that the batholith represents Jurassic plutonism related to an orogeny, perhaps to a subduction-related continental magmatic arc.

  • PDF

Petrological Study on the Mantle Xenolith from Songaksan, Jeju Island (제주도 송악산에 분포하는 맨틀포획암의 암석학적 연구)

  • Youngwoo Kil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.365-376
    • /
    • 2023
  • Songaksan, formed about 3800 year ago, is one of the tuff rings in the Jeju Island. Mantle xenoliths, spinel peridotites, are enclosed in the Songaksan Trachybasalt. The spinel peridotites are less than 2 cm in size and are composed of olivine, orthopyroxene, clinopyroxene, and spinel. The uniform compositions of the minerals from core to rim indicate that equilibrium was reached in the spinel peridotites before these were enclosed in the host magma. The spinel peridotites originated at depths between 55 and 60 km with equilibrium temperatures ranging from 915 to 968℃. The spinel peridotites from Songaksan reveal porphyroclastic texture with a lot of neoblast minerals. Olivines display strong kink banding, indicating that the upper mantle of Songaksan has been deformed. The spinel peridotites from Songaksan have undergone about 5~7% fractional melting, and cryptic metasomatism by an silicate melt. The period of entrainment and transport of the spinel peridotites in the host magma is about 15 days.

Olivine Synthesis Using Stainless Steel Tube (스테인리스강관을 이용한 감람석 합성)

  • Gi Young Jeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.337-343
    • /
    • 2023
  • Olivine is a complete solid solution of fayalite and forsterite that is abundant in Earth and extraterrestrial materials such as rocky planets, meteorites, asteroids, and interplanetary dust. Due to the wide range of olivine compositions, diverse olivine standards are required for quantitative mineralogical analysis of olivine-bearing materials. Olivine standards were synthesized using an electric furnace and stainless steel tubes at temperatures ranging from 1000~1100 ℃. Overall, olivine was synthesized covering the full range of composition, with some synthetic impurities and unreacted material. The synthesized olivine showed a linear increase in the unit cell dimension in proportion to the molar ratio of fayalite in the starting materials, and the diffraction intensity was consistent with that of natural olivine. However, iron-rich synthetic olivine samples tend to have a higher content of impurity, suggesting that not all synthetic olivine can be used as a standard material yet, and improvements in the synthesis process, such as using high purity starting materials and control of reaction time and temperature, are required.

An Efficient Separation Method for Detrital Monazite (효과적인 쇄설성 모나자이트 분리법)

  • Wonseok Cheong;Joongin An;Yoonsup Kim;Hyun Woo Aum
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.3
    • /
    • pp.127-138
    • /
    • 2024
  • We report an easy, efficient method for separating monazite grains using a sequence of gold pan, tap water, disposable sieve, magnet (0.35 T), and heavy liquid. The grain size after powdering (<230 ㎛) and the separation process using a water-filled pan (tilted at 10°) and a water supply (0.1 L/sec) followed the method described in Cheong et al. (2013). Ferro-magnetic minerals were most effectively removed using a magnet with a strength of 0.35 T (Tesla), but were not para-magnetic minerals such as monazite and xenotime. The remaining light particles from the previous process were finally separated using a heavy liquid, diiodomethane (CH2I2; G=3.32). Our method has the advantage of effectively separating not only monazite, but also xenotime and titanite.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.

Petrology and Geochemistry of Miocene Alkaline Basalt (Huangsongpu Basalt) from the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암(황송푸 현무암)의 암석학적/지화학적 특성)

  • Kim, Eunju;Hirata, Chiharu;Jeong, Hoon Young;Kil, Youngwoo;Yang, Kyounghee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.307-324
    • /
    • 2020
  • Major and trace elements, and Sr, Nd, isotopic composition analysis have been carried out on the Miocene basalt (Huangsongpu basalt, 20 Ma) 25 km to northeast from the Mt. Baekdu. The basalt has Na2O+K2O=3.5~4.7 wt.%, and MgO=9.9~11.1 wt.%, containing Mg-rich olivine (Mg#=75~86), clinopyroxene (Mg#=72~85) and Ca-rich plagioclase micro-phenocrysts. These data suggest that the basalt belongs to the alkaline magma series with a primitive nature, crystallized at a near-liquidus. The basalt is also characterized by high Cr (394~479 ppm) and Ni (389~519 ppm) contents, Nb-Ta enrichment anomalies and OIB-like trace elements patterns, displaying identical signatures to those of typical intraplate magmas. The rare earth element (REE) patterns of the basalt and high (Gd/Yb)sample/(Gd/Yb)PM ratio (=2.8~3.5) suggest the parental magma was derived from relatively low-degree (3~5%) partial melting of garnet peridotite. The 143Nd/144Nd and 87Sr/86Sr composition of the basalt are higher than those of BSE. The high 87Sr/86Sr (= ~0.7058) ratio of the basalt indicates a contribution of recycled ancient oceanic crust or continental crust on the Pacific slab suggesting that the Huangsongpu basalt was generated from metasomatized mantle.

Clay Mineralogy of the Gangneung-Donghae Coastal Sediments (강릉-동해 연안 퇴적물의 점토광물에 관한 연구)

  • Koo, Hyo Jin;Choi, Hunsoo;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.175-183
    • /
    • 2020
  • There have rarely been performed for the clay mineralogy of the East Sea sediments except for few studies about paleoenvironmental aspect. This study inferred the provenance of sediments based on the clay mineral characteristics and distribution pattern for the 120 sediment samples collected by the box corer from the Gangneung-Donghae area between 2017-2019. The relative proportions of the four major clay minerals are abundant in the order of illite, chlorite, kaolinite, and smectite. The continental shelf sediments below water depth 150 m have more chlorite and kaolinite content and better illite crystallinity, but less illite and smectite content, and S/I index than those of continental slope sediments. Clay mineral composition of the continental shelf sediments are influenced by the adjacent continental geology, because north site (Gangneung area) has more chlorite but south site (Donghae area) has more kaolinite. These characteristics and distribution pattern of clay minerals indicate that the provenance of sediments are different between continental shelf and continental slop. The continental shelf sediments may be introduced the study area by the adjacent small rivers whereas the continental slope sediment might be supplied by current from the south of the study area.