• 제목/요약/키워드: petrochemical complex

검색결과 101건 처리시간 0.022초

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M.;El-Lateef, Hany M. Abd;Aliyeva, Leylufer I.;Ismayilov, Ismayil T.;Qasimov, Elmar E.;Narmin, Mamedova M.
    • 대한화학회지
    • /
    • 제57권1호
    • /
    • pp.25-34
    • /
    • 2013
  • The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.

국가산업단지의 석유화학 안전관리 방안에 관한 연구 (A Study on the Safety Management of the Petrochemical Complex Area)

  • 김국래;황세연;김봉훈
    • 한국화재소방학회논문지
    • /
    • 제26권1호
    • /
    • pp.38-42
    • /
    • 2012
  • 울산, 여수 등 대단위 석유화학공장이 가동 중인 국가산업단지에서 화재 폭발 및 누출 등 중대산업사고가 발생되는 주요 원인과 안전관리 실태 등 문제점을 분석하여 이에 대한 제도적 측면 및 안전관리 측면에서 합리적인 대책을 제시해 보고자 한다.

Lymphohematopoietic Cancer Mortality and Morbidity of Workers in a Refinery/Petrochemical Complex in Korea

  • Koh, Dong-Hee;Kim, Tae-Woo;Yoon, Yong-Hoon;Shin, Kyung-Seok;Yoo, Seung-Won
    • Safety and Health at Work
    • /
    • 제2권1호
    • /
    • pp.26-33
    • /
    • 2011
  • Objectives: The purpose of this retrospective cohort study was to investigate the relationship between exposure of Korean workers to petrochemicals in the refinery/petrochemical industry and lymphohematopoietic cancers. Methods: The cohort consisted of 8,866 male workers who had worked from the 1960s to 2007 at one refinery and six petrochemical companies located in a refinery/petrochemical complex in Korea that produce benzene or use benzene as a raw material. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for 1992-2007 and 1997-2005 based on the death rate and cancer incidence rate of the Korean male population according to job title (production, maintenance, laboratory, and office workers). Results: The overall mortality and most cause-specific mortalities were lower among these workers than those of the general Korean population. Increased SMRs were observed for leukemia (4/1.45; SMR 2.77, 95% CI: 0.75-7.09) and lymphohematopoietic cancers (5/2.51; SMR 2, 95% CI: 0.65-4.66) in production workers, and increased SIRs were also observed in leukemia (3/1.34; SIR 2.24, 95% CI: 0.46-6.54) and lymphohematopoietic cancers (5/3.39; SIR 1.47, 95% CI: 0.48-3.44) in production workers, but the results were not statistically significant. Conclusion: The results showed a potential relationship between leukemia and lymphohematopoietic cancers and exposure to benzene in refinery/petrochemical complex workers. This study yielded limited results due to a short observational period; therefore, a follow-up study must be performed to elucidate the relationship between petrochemical exposure and cancer rates.

FIRE PROTECTION FOR PETROCHEMICAL PLANT

  • Suh, Jung-H.
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.244-251
    • /
    • 1997
  • Since 1970s, The Petrochemical Industry in Korea has grown rapidly by the successful economic growth. While the process became larger and more complex, hazardous chemicals have been used in large quantity, Therefore, the risk of a major accident such as fire, explosion and toxic material release has been increased. Korea has been ranked the fifth in petrochemical product capacity worldwide, also required to meet international standards on process safety management. Fire Protection System integral part of safely management in Petrochemical Plants, will be reviewed.

  • PDF

석유화학단지의 휘발성 유기화합물로 인한 인체 위해도 평가에 관한 연구 (A Study on the Health Risk Assessment of Volatile Organic Compounds in a Petrochemical Complex)

  • 이진홍;김윤신;류영태;유인석
    • 한국대기환경학회지
    • /
    • 제13권4호
    • /
    • pp.257-267
    • /
    • 1997
  • This study focuses on the health risk assessment of airborne volatile organic compounds (VOCs) in a petrochemical complex, with several emphases on a risk assessment method. The first emphasis is on the importance of hazard identification to determine the likely carcinogenic potential of a VOC. Without considering this type of information, a direct comparison of the carcinogenic risks of two pollutants is meaningless. Therefore, wer suggest that this type of information be prepared and be listed with the estimate of cancer risk in parallel. The second emphasis is on the selection of a better dose-response model to estimate unit risk or cancer potency factor of a carcinogenic VOC. Finally, probilistic risk assessment method is discussed and recommended to use within a comparison of conventional point-estimate method. A health risk assessment has also been carried out. For non-carcinogenic risk, even the highest hazard index for carbon tetrachloride is estimated to be less than 1 with the other VOCs less than 0.03. However, the lifetime cancer risk from the inhalation of airborne VOCs is estimated to be about $2.6 \times 10^{-4}$ which is higher than the risk standard of $10^{-6}$ or even $10^{-5}$. Therefore, the investigation into domestic petrochemical complexes should be strengthened to obtain more fine long-term airborne VOC data.

  • PDF

석유화학단지 수소 재활용 최적 네트워크 설계 (Optimal Hydrogen Recycling Network Design of Petrochemical Complex)

  • 정창현;이철진;김대현;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.25-31
    • /
    • 2007
  • 석유화학단지내에서 석유화학공장과 정유공장과 같은 산업현장에서는 상당량의 수소가 부산물로 발생되고 있으나, 이는 대부분 자체적으로 연료로 사용되고 있다. 그러나 연료로 사용되는 상당량의 수소를 에너지원의 원료나 기타 공정의 원료로 재활용할 경우, 현재보다 수소의 가치를 높여서 사용할 수 있다. 본 연구에서는 석유화학단지내 공장간 수소 재활용 네트워크를 설계하였다. 수소 핀치 분석을 통하여 교환망 구성에 필요한 최소의 수소 요구 및 정제량을 파악하고, 네트워크 구성에 필요한 비용과 기타 제약 조건으로 최적화 문제를 구성하여 공급처(source)와 수요처(sink) 공장간에 최적으로 수소를 재활용하기 위한 네트워크를 설계하였다.

석유화학공장의 소화설비에 관한 연구 (A Study on the Firefighting Equipment in Petrochemical Plants)

  • 김봉훈;최재욱;임우섭
    • 한국화재소방학회논문지
    • /
    • 제28권5호
    • /
    • pp.14-22
    • /
    • 2014
  • 석유화학공장에서 화재 폭발사고는 매년 반복되고 있으나 화재 방호시스템에 관한 국내 법규는 최악의 화재 시나리오에 대응하기에는 미흡한 실정이다. 이에 본 연구에서는 석유화학공장에서 국내외 화재 방호시스템의 기준을 비교 분석하고 울산국가산업단지 석유화학공장 32개소의 소화설비 현황을 조사하였다. 결론적으로 석유화학공장에서 소화용수는 최악의 화재 시나리오를 기반으로 하여 설계하고 고정식 물분무 설비, 고가 모니터 노즐, 워터커튼 설비, 대용량 포모니터 설비와 같은 소화설비가 최악의 화재 시나리오에 대비하여 설치되어야 할 것으로 나타났다.

여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정 (Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex)

  • 전준민;허당;김동술
    • 한국대기환경학회지
    • /
    • 제21권1호
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

공업단지의 입지와 지역변화에 관한 연구: 여천산단을 사례로 (Regional Change and Location of Industrial Complex: A Case of Yeochon National Industrial Complex of Korea)

  • 이정록
    • 한국경제지리학회지
    • /
    • 제5권2호
    • /
    • pp.137-155
    • /
    • 2002
  • 본 연구는 전남 여천시에 입지한 여천산단을 사레로 공업단지의 입지가 지역변화에 미친 영향을 고찰하였다. 여천산단은 1970년대 초반 국가주도의 공업개발계획의 일환으로 건설되어 우리나라의 대표적인 석유화학공업단지로 성장하였다. 여천산단의 입지는 지역의 인구성장과 도시발전 그리고 지역의 산업구조와 고용구조 변화에 커다란 영향을 미쳤다. 여천산단의 입지로 인하여 여천지역의 경제구조는 농수산업 중심에서 제조업 중심으로 개편되었고, 지역의 제조업 구성에서 석유화학 관련제조업이 매우 높은 비중을 차지하였다. 또한 여천산단의 입지가 지역내 고용 및 산업구조에 미친 영향을 분석하기 위해 변이할당분석과 지역성장률 시차분석을 실시한 결과, 제조업과 건설업이 1987년 이후 지역의 고용성장에 커다란 파급효과를 제공한 것으로 나타났다. 그리고 여천산단의 입지는 여천시뿐만 아니라 인접한 여수시와 여천군의 경제구조변화에도 영향을 미친 것으로 밝혀졌다.

  • PDF

석유화학단지 주변 주거지역 다환방향족탄화수소(PAHs)의 농도와 Monte-Carlo 모의실험을 통한 위해성평가 (Seasonal Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Residential Areas Around Petrochemical Complexes and Risk Assessment Using Monte-Carlo Simulation)

  • 박동윤;최영태;양원호;최길용;이채관
    • 한국환경보건학회지
    • /
    • 제47권4호
    • /
    • pp.366-377
    • /
    • 2021
  • Background: Polycyclic aromatic hydrocarbons (PAHs) are generated in petrochemical complexes, can spread to residential areas and affect the health of residents. Although harmful PAHs are mainly present in particle phase, gas phase PAHs can generate stronger toxic substances through photochemical reaction. Therefore, the risk assessment for PAHs around the petrochemical complex should consider both particle and gas phase concentrations. Objectives: This study aimed to investigate the concentration characteristics of particle and gas phase PAHs by season in residential areas around petrochemical complexes, and to assess the risk of PAHs. Methods: Samples were collected for 7 days by seasons in 2014~2015 using a high volume air sampler. Particle and gas phase PAHs were sampled using quartz filter and polyurethane foam, respectively, analyzed by GC-MS. Chronic toxicity and probabilistic risk assessment were performed on 14 PAHs. For chronic toxicity risk assessment, inhalation unit risk was used. Monte-Carlo simulation was performed for probabilistic risk assessment using the mean and standard deviation of measured PAHs. Results: The concentration of particle total PAHs was highest in autumn. The gas phase concentration was highest in autumn. The average gas phase distribution ratio of low molecular weight PAHs composed of 2~3 benzene rings was 85%. The average of the medium molecular weight composed of 4 benzene rings was 53%, and the average of the high molecular weight composed of 5 or more benzene rings was 9%. In the chronic toxicity risk assessment, 7 of the 14 PAHs exceeded the excess carcinogenic risk of 1.00×10-6. In the Monte-Carlo simulation, Benzo[a]pyrene had the highest probability of exceeding 1.00×10-6, which was 100%. Conclusions: The concentration of PAHs in the residential area around the petrochemical complex exceeded the standard, and the excess carcinogenic risk was evaluated to be high. Therefore, it is necessary to manage the air environment around the petrochemical complex.