• Title/Summary/Keyword: petrochemical complex

Search Result 101, Processing Time 0.035 seconds

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M.;El-Lateef, Hany M. Abd;Aliyeva, Leylufer I.;Ismayilov, Ismayil T.;Qasimov, Elmar E.;Narmin, Mamedova M.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.

A Study on the Safety Management of the Petrochemical Complex Area (국가산업단지의 석유화학 안전관리 방안에 관한 연구)

  • Kim, Kug-Rae;Hwang, Sae-Yeon;Kim, Bong-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.38-42
    • /
    • 2012
  • Major industrial accidents such as fires, explosions and toxic releases have occurred in Ulsan, Yeosu petrochemical complex area every year. In this study, we analyzed the causes of the previous major accidents in order to provide reasonable measures for safety regulations and process safety management. Consequently, It is necessary to make constant revisions of safety regulations and to improve process safety management in other to prevent major industrial accidents in the petrochemical complex areas.

Lymphohematopoietic Cancer Mortality and Morbidity of Workers in a Refinery/Petrochemical Complex in Korea

  • Koh, Dong-Hee;Kim, Tae-Woo;Yoon, Yong-Hoon;Shin, Kyung-Seok;Yoo, Seung-Won
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 2011
  • Objectives: The purpose of this retrospective cohort study was to investigate the relationship between exposure of Korean workers to petrochemicals in the refinery/petrochemical industry and lymphohematopoietic cancers. Methods: The cohort consisted of 8,866 male workers who had worked from the 1960s to 2007 at one refinery and six petrochemical companies located in a refinery/petrochemical complex in Korea that produce benzene or use benzene as a raw material. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for 1992-2007 and 1997-2005 based on the death rate and cancer incidence rate of the Korean male population according to job title (production, maintenance, laboratory, and office workers). Results: The overall mortality and most cause-specific mortalities were lower among these workers than those of the general Korean population. Increased SMRs were observed for leukemia (4/1.45; SMR 2.77, 95% CI: 0.75-7.09) and lymphohematopoietic cancers (5/2.51; SMR 2, 95% CI: 0.65-4.66) in production workers, and increased SIRs were also observed in leukemia (3/1.34; SIR 2.24, 95% CI: 0.46-6.54) and lymphohematopoietic cancers (5/3.39; SIR 1.47, 95% CI: 0.48-3.44) in production workers, but the results were not statistically significant. Conclusion: The results showed a potential relationship between leukemia and lymphohematopoietic cancers and exposure to benzene in refinery/petrochemical complex workers. This study yielded limited results due to a short observational period; therefore, a follow-up study must be performed to elucidate the relationship between petrochemical exposure and cancer rates.

FIRE PROTECTION FOR PETROCHEMICAL PLANT

  • Suh, Jung-H.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.244-251
    • /
    • 1997
  • Since 1970s, The Petrochemical Industry in Korea has grown rapidly by the successful economic growth. While the process became larger and more complex, hazardous chemicals have been used in large quantity, Therefore, the risk of a major accident such as fire, explosion and toxic material release has been increased. Korea has been ranked the fifth in petrochemical product capacity worldwide, also required to meet international standards on process safety management. Fire Protection System integral part of safely management in Petrochemical Plants, will be reviewed.

  • PDF

A Study on the Health Risk Assessment of Volatile Organic Compounds in a Petrochemical Complex (석유화학단지의 휘발성 유기화합물로 인한 인체 위해도 평가에 관한 연구)

  • 이진홍;김윤신;류영태;유인석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.257-267
    • /
    • 1997
  • This study focuses on the health risk assessment of airborne volatile organic compounds (VOCs) in a petrochemical complex, with several emphases on a risk assessment method. The first emphasis is on the importance of hazard identification to determine the likely carcinogenic potential of a VOC. Without considering this type of information, a direct comparison of the carcinogenic risks of two pollutants is meaningless. Therefore, wer suggest that this type of information be prepared and be listed with the estimate of cancer risk in parallel. The second emphasis is on the selection of a better dose-response model to estimate unit risk or cancer potency factor of a carcinogenic VOC. Finally, probilistic risk assessment method is discussed and recommended to use within a comparison of conventional point-estimate method. A health risk assessment has also been carried out. For non-carcinogenic risk, even the highest hazard index for carbon tetrachloride is estimated to be less than 1 with the other VOCs less than 0.03. However, the lifetime cancer risk from the inhalation of airborne VOCs is estimated to be about $2.6 \times 10^{-4}$ which is higher than the risk standard of $10^{-6}$ or even $10^{-5}$. Therefore, the investigation into domestic petrochemical complexes should be strengthened to obtain more fine long-term airborne VOC data.

  • PDF

Optimal Hydrogen Recycling Network Design of Petrochemical Complex (석유화학단지 수소 재활용 최적 네트워크 설계)

  • Jeong, Changhyun;Lee, Chul-Jin;Kim, Dae-hyeon;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • In a petrochemical complex, large amount of hydrogen is produced as a by-product and used as a fuel in petrochemical and oil refinery plants. By recycling this byproduct hydrogen as a raw material, the value of hydrogen can be greatly improved. This paper proposes a design methodology for optimal hydrogen recycle network between plants in petrochemical complex by analyzing the hydrogen pinch, required cost and constraints.

A Study on the Firefighting Equipment in Petrochemical Plants (석유화학공장의 소화설비에 관한 연구)

  • Kim, Bong-Hoon;Choi, Jae-Wook;Lim, Woo-Sub
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.14-22
    • /
    • 2014
  • Hydrocarbon fires and explosions in petrochemical plants have occurred repeatedly every year. But domestic law of fire protection system is insufficient for the worst case scenario. In this study, we analyzed domestic and foreign standards of fire protection system in petrochemical plants and surveyed firefighting equipment of 32 petrochemical plants in ulsan petrochemical complex. Finally, it is necessary to design fire water supply based on the worst case scenario in petrochemical plants and firefighting equipment such as fixed water spray system, elevated monitor nozzle, water curtain, large amount foam monitor system should be installed for the worst case scenario in petrochemical plants.

Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex (여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정)

  • Jeon Jun-Min;Hur Dong;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

Regional Change and Location of Industrial Complex: A Case of Yeochon National Industrial Complex of Korea (공업단지의 입지와 지역변화에 관한 연구: 여천산단을 사례로)

  • 이정록
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.137-155
    • /
    • 2002
  • The purpose of this study is concerned with the relationship between the location of industrial complex and regional changes. Yeochon National Industrial Complex(YNIC) was dedicated as an industrial site in 1967 according to a part of the Korean government's plan of developing for heavey chemical industry. Yeochun city has been changed with location and establishment of YNIC since 1969. The establishment of YNIC have influence upon the increase of population and employment, urban development, and growth of regional economy within research areas including of Yeochun city, Yeochun county, and Yeosu city. In addition, with the establishment of YNIC, the regional economical structure was progressed from farm and fishery oriented sector to manufacturing oriented sector, thus the petrochemical business related companies hold a majority among regional manufacturing structure. We used the shift-share analysis and regional growth rate differential analysis in order to examine the characteristics revealed in the transformation of employment and industrial structure. The petrochemical related manufacturing and construction industries provided a great influence on the growth of regional employment.

  • PDF

Seasonal Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Residential Areas Around Petrochemical Complexes and Risk Assessment Using Monte-Carlo Simulation (석유화학단지 주변 주거지역 다환방향족탄화수소(PAHs)의 농도와 Monte-Carlo 모의실험을 통한 위해성평가)

  • Park, Dong-Yun;Choe, Young-Tae;Yang, Wonho;Choi, Kil-Yong;Lee, Chae-Kwan
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.4
    • /
    • pp.366-377
    • /
    • 2021
  • Background: Polycyclic aromatic hydrocarbons (PAHs) are generated in petrochemical complexes, can spread to residential areas and affect the health of residents. Although harmful PAHs are mainly present in particle phase, gas phase PAHs can generate stronger toxic substances through photochemical reaction. Therefore, the risk assessment for PAHs around the petrochemical complex should consider both particle and gas phase concentrations. Objectives: This study aimed to investigate the concentration characteristics of particle and gas phase PAHs by season in residential areas around petrochemical complexes, and to assess the risk of PAHs. Methods: Samples were collected for 7 days by seasons in 2014~2015 using a high volume air sampler. Particle and gas phase PAHs were sampled using quartz filter and polyurethane foam, respectively, analyzed by GC-MS. Chronic toxicity and probabilistic risk assessment were performed on 14 PAHs. For chronic toxicity risk assessment, inhalation unit risk was used. Monte-Carlo simulation was performed for probabilistic risk assessment using the mean and standard deviation of measured PAHs. Results: The concentration of particle total PAHs was highest in autumn. The gas phase concentration was highest in autumn. The average gas phase distribution ratio of low molecular weight PAHs composed of 2~3 benzene rings was 85%. The average of the medium molecular weight composed of 4 benzene rings was 53%, and the average of the high molecular weight composed of 5 or more benzene rings was 9%. In the chronic toxicity risk assessment, 7 of the 14 PAHs exceeded the excess carcinogenic risk of 1.00×10-6. In the Monte-Carlo simulation, Benzo[a]pyrene had the highest probability of exceeding 1.00×10-6, which was 100%. Conclusions: The concentration of PAHs in the residential area around the petrochemical complex exceeded the standard, and the excess carcinogenic risk was evaluated to be high. Therefore, it is necessary to manage the air environment around the petrochemical complex.