• Title/Summary/Keyword: pesticide degradation

Search Result 114, Processing Time 0.025 seconds

Biological Degradation of Cypermethrin by Marine Bacteria, Cellulophaga lytica DAU203 (해양 세균 Cellulophaga lytica DAU203에 의한 사이퍼메트린의 생물학적 분해)

  • Lee, Je-Hoon;Lee, Yong-Suk;You, Ah-Young;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.483-487
    • /
    • 2018
  • Cypermethrin, a commonly used domestic and agricultural pyrethroid pesticide, is widely considered detrimental to the environment and to many organisms because of its residual property and toxicity. Cellulophaga lytica DAU203, isolated from coastal sediment, was chosen because it degrade cypermethrin. Cellulophaga lytica DAU203 effectively degraded cypermethrin, as the utilized carbon source and substrate, in a mineral salt medium. Effective factors, such as carbon source, nitrogen source, initial pH, and temperature, for cypermethtin biological degradation by Cellulophaga lytica DAU203 were analyzed by one factor at a time method. Temperature ($22{\sim}42^{\circ}C$), initial pH (5~9), and yeast extract concentration (0.1~2.5%[w/v]) were selected as the three most important factors. There were optimized at $33.4^{\circ}C$, pH 7.7, and 2.4%(w/v) by response surface methodology, respectively. The Box- Behnken design consisting of 46 experimental runs with three replicates was used to optimize the independent variables which significantly influenced the cypermethrin biological degradation. This model for cypermethrin degradation by Cellulophaga lytica DAU203 is highly significant (p<0.05). Under the optimized condition, Cellulophaga lytica DAU203 degraded approximately 83.7 % of the cypermethrin within 5 days. These results suggest that Cellulophaga lytica DAU203 may be useful for the biological degradation of cypermethrin in cypermethrin-contaminated environments.

Proficiency Testing for the HPLC Analysis of Azoxystrobin, Imidacloprid and Methabenzthiazuron Residues in Soil (HPLC를 이용한 아족시스트로빈과 이미다클로프리드, 메타벤즈티아주론의 토양 잔류분석 숙련도시험)

  • Kim, Chan-Sub;Son, Kyeong-Ae;Gil, Geun-Hwan;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.218-229
    • /
    • 2015
  • The proficiency testing for the residue laboratories of pesticide registration was conducted in order to improve the reliability and the ability for pesticide residue analysis. On November 2012 the testing was carried out using the soil collected and kept as the moistened state for five years, which was expected to very low residue levels of pesticides. The soil was fortified with azoxystrobin, imidacloprid and methabenzthiazuron in a manner similar to prepare soil samples for indoor soil degradation test, and then sub-samples were prepared for the distribution to participants. Some of them were randomly selected for confirm of homogeneity and to ensure the stability of samples at room temperature. Samples were consisted of two soils treated as different levels, one of which was used to the assessment and another used to confirm. In addition, provided three standard solutions, respectively concentration of 10 mg/L, and untreated soil. Forty eight institutions submitted results. The medians of results were used as the assigned values for pesticide residues. Fitness for purpose standard deviation of proficiency test was calculated by applying 20% RSD as the coefficient of variation allowed in the soil residue test. Z-score was applied for evaluation of individual pesticides, and the average of the absolute value of the Z-score for the overall assessment of pesticides. Laboratories evaluated the absolute value of the Z-score less than 2 to fit the case of azoxystrobin were 48, imidacloprid and methabenzthiazuron 46.

Proficiency Testing for the Gas-chromatographic Analysis of Procymidone, Chlorpyrifos and Metolachlor Residues in Soil (가스크로마토그래피를 이용한 토양 중 프로사이미돈과 클로르피리포스, 메톨라클로르의 잔류분석 숙련도시험)

  • Kim, Chan-Sub;Son, Kyeong-Ae;Gil, Geun-Hwan;Kim, Jin-Bae;Hong, Su-Myeong;Kwon, Hye-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.94-106
    • /
    • 2013
  • The proficiency testing for the residue laboratories of pesticide registration was conducted in order to improve the reliability and the ability for pesticide residue analysis. On October 2011 the testing was carried out using the soil collected and kept as the moistened state for five years, which is expected to very low residue levels of pesticides. The soil was fortified with chlorpyrifos, metolachlor and procymidone in a manner similar to prepare soil sample for indoor soil degradation test, and then sub-samples were prepared for the distribution to participants. Some of them were randomly selected for confirm of homogeneity and to ensure the stability of samples at room temperature. Samples were consisted of two soil treated as different levels, one of which was used to the assesment and another used to confirm. In addition, provide three standard solutions, respectively concentration of 10 mg/L, and untreated soil. Forty seven institutions submitted results. The medians of results were used as the assigned values for pesticide residues. Fitness for purpose standard deviation of proficiency test was calculated by applying 20% RSD as the coefficient of variation allowed in the soil residue test. Z-score was applied for evaluation of individual pesticides, and the average of the absolute value of the Z-score for the overall assessment of pesticides. Laboratories evaluated the absolute value of the Z-score less than 2 to fit the case of chlorpyrifos and procymidone were 44, metolachlor 40.

Persistence of Fungicide Pencycuron in Soils (토양 중 살균제 Pencycuron의 잔류 특성)

  • An, Xue-Hua;An, Wen-Hao;Im, Il-Bin;Lee, Sang-Bok;Kang, Jong-Gook
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The adsorption and persistence of pencycuron {1-(4-chlorobenzyl) cyclopentyl-3-phenylurea} in soils were investigated under laboratory and field conditions to in order to assess the safety use and environmental impact. In the adsorption rate experiments, a significant power function of relation was found between the adsorbed amount of pencycuron and the shaking time. Within one hour following the shaking, the adsorption amounts in the SCL and the SiCL were 60 and 65% of the maximum adsorption amounts, respectively. The adsorption reached a quasi-equilibrium 12 hours after shaking. The adsorption isotherms followed the Freundlich equation. The coefficient (1/n) indicating adsorption strength and degree of nonlinearity was 1.45 for SCL and 1.68 to SiCL. The adsorption coefficients ($K_d$) were 2.31 for SCL and 2.92 to SiCL, and the organic carbon partition coefficient, $K_{oc}$, was 292.9 in SCL and 200.5 inSiCL. In the laboratory study, the degradation rate of pencycuron in soils followed a first-order kinetic model. The degradation rate was greatly affected by soil temperature. As soil incubation temperature was increased from 12 to $28^{\circ}C$, the residual half life was decreased from 95 to 20 days. Arrhenius activation energy was 57.8 kJ $mol^{-1}$. Furthermore, the soil moisture content affected the degradation rate. The half life in soil with 30 to 70% of field moisture capacity was ranged from 21 to 38 days. The moisture dependence coefficient, B value in the empirical equation was 0.65. In field experiments, the half-life were 26 and 23 days, respectively. The duration for period of 90% degradation was 57 days. The difference between SCL and SiCL soils varied to pencycuron degradation rates were very limited, particularly under the field conditions, even though the characteristics of both soils are varied.

Residual Pattern of Chlorothalonil, Indoxacarb, Lufenuron, Metalaxyl and Methomyl during the Cultivation Periods in Chinese Cabbage (얼갈이배추의 재배기간 중 Chlorothalonil, Indoxacarb, Lufenuron, Metalaxyl 및 Methomyl의 잔류량 변화)

  • Ko, Kwang-Yong;Kim, Sung-Hun;Jang, Young-Hee;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • In order to know the residual pattern of some pesticides and predict to the degradation period until below MRL, we experimented chlorothalonil, indoxacarb, lufenuron, metalaxyl and methomyl for Chinese cabbage. They were frequently detected pesticides in Chinese cabbage by NAQS (National Agricultural product Quality management Service) monitoring survey. In this experiment, we sprayed those pesticides 10days before harvest and analyzed 0, 1, 2, 3, 5, 7, 10 day samples to establish logical equation and to calculate $DT_{50}0$. During the cultivating period, the residue amount of chlorothalonil was changed from $55.58\;mg\;kg^{-1}$ (0 day) to $20.08\;mg\;kg^{-1}$ (10 day), $DT_{50}$ was 7.45 days, indoxacarb was $7.85\;mg\;kg^{-1}$ (0 day) to $1.46\;mg\;kg^{-1}$ (10 day), and 4.2 days, lufenuron was $1.57\;mg\;kg^{-1}$ (0 day) to $0.49\;mg\;kg^{-1}$ (10 day), and 5.85 days, metalaxyl was $8.12\;mg\;kg^{-1}$ (0 day) to $0.10\;mg\;kg^{-1}$ (10 day), and 175 days, and methomyl was $11.51\;mg\;kg^{-1}$ (0 day) to $0.80\;mg\;kg^{-1}$ (10 day), and 2.42 days at single dose application, respectively. The $DT_{50}$ of double amount in those pesticides were 9.05 days in chlorothatonil, 7.09 days in indoxacarb, 8.82 days in lufenuron, 3.32 days in metalaxyl, and 2.72 days in methomyl, respectively.

Removal effect of residual pesticides in red pepper powder by UV irradiation (자외선 조사에 의한 고춧가루 중 잔류농약 제거효과 연구)

  • Jung, You-Jung;Eom, Mi-Na;Jeong, Il-Hyung;Son, Jong-Sung;Kim, Kyung-A;Shin, Sang-Woon;Oh, Sang-Hun;Kim, Bong-Real;Chae, Kyeng-Suk;Yoon, Mi-Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.145-150
    • /
    • 2012
  • This study was carried out to investigate the degradation of six residual pesticides (${\alpha}$- and ${\beta}$-Endosulfan, Cypermethrin, Fenitrothion, Hexaconazole, EPN) in red pepper powder after ultraviolet (UV) irradiation. The residual ratio of pesticides after 365 nm irradiation which distance is 20 cm and irradiation time is 5 minutes were 73.4, 69.6, 60.8, 92.7, 73.8 and 90.5% in ${\alpha}$-Endosulfan, ${\beta}$-Endosulfan, Cypermethrin, Fenitrothion, Hexaconazole and EPN, respectively. The residual ratio of pesticides after 254 nm irradiation which distance is 5 cm and irradiation time is 36 hours were 74.6, 64.5, 71.1, 79.1, 79.4 and 64.7% in ${\alpha}$-Endosulfan, ${\beta}$-Endosulfan, Cypermethrin, Fenitrothion, Hexaconazole and EPN, respectively.

Biosensor System for the Detection of Agrichemicals and Its Applications (농약 검출을 위한 바이오센서 시스템 연구 및 그 응용)

  • Park, Tae-Jung;Yang, Min-Ho;Lee, Sang-Yup;Kim, Soo-Hyun
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.227-238
    • /
    • 2009
  • In the recent years, some organic toxic chemicals were used for obtaining high-yield productivity in agriculture. The undegraded pesticides may remain in the agricultural foods through atmosphere, water, and soil and cause public health problems to environmental resources and human beings even at very low concentrations. Small amounts of pesticides can affect a central nervous system, resulting in immunogenic diseases, infertility problems, respiratory diseases and born marrow diseases, which can lead even to death. Monitoring of the environmental pesticide is one of the important issues for the human well-being. Several kinds of biosensors have been successfully applied to the detection of agrichemical toxicity. Also, few platforms for biocide detection have been definitely developed for the degradation and reaction of pesticides. Biochip and electrochemistry experiments involve immobilizing a receptor molecule on a solid substrate surface, and monitoring its interaction with an analyze in a sample solution. Furthermore, nanotechnology can be applied to make high-throughput analyses that are smaller, faster and sensitive than conventional assays. Some nanomaterials or nanofabricated surfaces can be coupled to biomolecules and used in antibody-based assays and enzymatic methods for pesticide residues. The operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in agrichemical defection research and also describe the label-free biosensor for pesticides using various useful detection methods.

Guidance on Estimating Soil Persistence and Degradation Kinetics from Environmental Fate Studies on Veterinary Pharmaceuticals for Environmental Risk Assessment (동물용의약품의 환경 중 위해성 평가를 위한 토양 잔류성 시험법 가이드라인)

  • Kwon, Jin-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.68-75
    • /
    • 2011
  • BACKGROUND: To assess and prevent the environmental impacts and risks by veterinary pharmaceuticals, Guidance on Estimating Soil Persistence and Degradation Kinetics from Environmental Fate Studies on Veterinary Pharmaceuticals for Environmental Risk Assessment was proposed. METHODS AND RESULTS: Proposed guidance was coined by VICH, EU guideline, OECD guideline and soil dissipation studies for the purpose of international harmonizing. Guidance was also modified from pesticide soil persistence testing guidelines of US, EU, and Korea, with practical approaches adopting in-use test guideline for Korea. CONCLUSION(S): Proposed guidance are consisted of three parts; Laboratory Soil Experiment, Field Soil Dissipation Study, and Estimation of $DT_{50}/DT_{90}$. Proposed guidance is to be available for the requirement for registration of veterinary pharmaceuticals with fit for purpose in Korea.

Phytoremediation of the pesticides, endosulfan (${\alpha}$ and ${\beta}$) and fenitrothion, using aquatic plants (수생식물을 이용한 엔도설판(${\alpha},\;{\beta}$) 및 페니트로치온의 제거)

  • Kim, Jong-Hyang;Lee, Bang-Hee;Hur, Jong-Sou;Lee, Geun-Seon;Koh, Sung-Cheol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.249-256
    • /
    • 2010
  • A phytoremediation study has been conducted to see if some known aquatic plants can remove the pesticides, endosulfan-${\alpha},\;{\beta}$ and fenitrothion which are frequently used in the crop protection and golf course management, and are likely to exist as residual pollutants in the aquatic ecosystems. Among the five aquatic plants tested in the microcosms, water lily Nymphaea tetragona Georgi showed the highest degradation efficacies (85~95%) for the three pesticides as opposed to the control(13~26%). The efficacies for the other plants were in the range of 46~80% in the order of Pistia stratiotes, Cyperus helferi, Eichhornia crassipes, and Iris pseudoacorus. Fenitrothion, an organo-phosphorus pesticide, was much more vulnerable to the phytoremediation than the organo-chlorine pesticides, endosulfan-${\alpha}$ and endosulfan-${\beta}$. The kinetic rate constants ($min^{-1}$) for removal of the three pesticides were more than 10 times higher than the control (non-planting) in case of Nymphaea tetragona Georgi. This aquatic plant showed kinetic rate constants about 2 times as much as the lower kinetic rate constants shown by Iris pseudoacorus. The reason for the highest degradation efficacy of water lily would be that the plant can live in the sediment and possess roots and broad leaves which could absorb or accumulate and degrade more pollutants in association with microbes. These results indicate that some of the selected aquatic plants planted near the agricultural lands and wetlands could contribute to remediation of pesticides present in these places, and could be applicable to protection of the aquatic ecosystems.

Persulfate Oxidation of 2,4-D: Effect of Hydroxylamine and Chelating Agent (과황산을 이용한 2,4-D의 산화: 하이드록실아민, 킬레이트제의 영향)

  • Choi, Jiyeon;Yoon, Na Kyeong;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.54-64
    • /
    • 2021
  • The chemical warfare agents (CWAs) have been developed for offensive or defensive purposes and used as chemical weapons in war and terrorism. The CWAs are exposed to the natural environment, transported through the water system and then eventually contaminate soil and groundwater. Therefore, effective decontamination technology to remediate CWAs are needed. The CWAs are extremely dangerous and prodution is strictly prohibited, therefore, it is difficult to use CWAs even in experimental purpose. In this study, 2,4-dichlorophenoxyacetic acid (2,4-D) was chosen as a model representative CWA because it is a simulant of anti-plant CWAs and one of the major component of agent orange. The optimum degradation conditions such as oxidant:activator ratio were determined. The effects of hydroxylamine and chelating agents such as citric acid (CA), oxalic acid (OA), malic acid (MA), and EDTA addition to increase Fe2+ activation were also investigated. Scavenger experiments using tert-butyl alcohol (TBA) and ethanol confirmed that although both sulfate (SO4•-) and hydroxyl radical (•OH) existed in Fe2+-persulfate system, sulfate radical was the predominant radical. To promote the Fe2+ activator effect, the effect of hydroxylamine as a reducing agent was investigated. In chelating agents assisted Fe2+-persulfate oxidation, the addition of 2 mM of CA and MA enhanced 2,4-D degradation. In contrast, EDTA and OA inhibited the 2,4-D removal due to steric hindrance effect.