• Title/Summary/Keyword: pesticide degradation

Search Result 114, Processing Time 0.025 seconds

Effect of an Organochlorine Insecticide, Endosulfan on Soil Bacteria Community as Evaluated by 16S rRNA Gene Analysis (유기염소계 살충제 엔도설판이 토양세균 군집에 미치는 영향 평가)

  • Ahn, Jae-Hyung;Park, InCheol;Kim, Wan-Gyu;Han, Byeong-Hak;You, Jaehong
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Although a global ban on the use of endosulfan, an organochloline insecticide, has taken effect in mid-2012, it has been still used in several countries, including India and China, and detected in diverse environments in the world due to its relative persistence and semi-volatility. In this study, the effect of endosulfan on soil bacterial community was investigated using 16S rRNA gene pyrosequencing method. When endosulfan was applied to an upland soil at a rate of 100 mg/kg soil (ES soil), the number of operational taxonomic units (OTU) and diversity indices for bacteria initially decreased and gradually recovered to the level of the non-treated soil (NT soil) during an eight-week incubation period. At bacterial phylum level, relative abundances of Proteobacteria and Verrucomicrobia were higher while those of Chloroflexi and Spirochaetes were lower in the ES soil than in the NT soil, suggesting that an endosulfan application affects the bacterial community structure in soil. In the ES soil, the relative abundances of the OTUs affiliated to the genera Sphingomonas and Burkholderia increased in the initial period of incubation while those affiliated to the genera Pseudonocardia and Opitutus increased in the late period of incubation. Because the first three genera contain bacterial strains reported to degrade endosulfan, they are expected to be involved in the degradation of endosulfan, probably one after another.

A Biological Activity of Serratia marcescens Strains Isolated from Dead Larva of the Diamondback Moth, Plutella xylostella (Plutellidae, Lepidoptera) (배추좀나방(Plutella xylostella)의 죽은 유충에서 분리한 Serratia marcescens 균주의 생물활성)

  • Jun, Jun Hack;Jin, Na Young;Lee, You Kyoung;Lee, Bo Ram;Youn, Young Nam;Yu, Yong Man
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.152-158
    • /
    • 2016
  • The cause of death was investigated with several dead cabbage moth larvae in breeding box. Bacterial strains were isolated and selected from the dead larvae by bioassay. One of them was identified as Serratia marcescens used by morphological characteristics and gene sequencing. S. marcescens were cultured by Luria Bertani (LB) media broth for bioassay. When 100-fold dilution of culture broth to third larvae of diamondback moth, Plutella xylostella, it was showed a 100% mortality at 2 days after treatment, and only 10-fold dilution of supernatant liquid was showed 86.6% mortality. When the culture broth of S. marcescens was applied to the larvae of beet armyworm, Spodoptera exigua, contact and feeding toxicity were 20 and 8% of mortality, respectively. Otherwise, when the culture broth of S. marcescens was applied to 5 major plant pathogens, antibacterial activities against Fusarium oxysporum, Rhizoctonia solani, Colletotrichum gloeosporioides, Phytophthora capsici and Sclerotinias clerotiorum were 4.7, 11.3, 20, 15.7 and 42.6%, respectively. Also, degradation ability of S. marcescens against protein and chitin were examined.

Physico-chemical properties and biological activity of controlled-release granular formulations for the herbicide dicamba (방출조절형 dicamba 입제의 물리화학성 및 생물효과)

  • Oh, Kyeong-Seok;Oh, Byung-Youl;Park, Seung-Soon;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1999
  • Dicamba (3,6-dichloro-o-anisic acid) granular formulations for controlled release (DGFCRs) were prepared with biodegradable polymers, corn starch and pregelatinized starch, to minimize harmful side effects, extend weed control performance, and control the releasing rate of the active ingredient. Physico-chemical properties and biological activity of DGFCRs were studied. Six different granules were formulated by applying two processes, granulation and extrusion. Formulation efficiencies of active ingredient (A.I.) in the granules prepared by granulating and extruding were $90.0{\sim}96.3%$. Incorporation ratios of A.I. in the granules prepared by granulating and extruding showed $89.5{\sim}94.5%$ and $46.7{\sim}82.0%$, respectively. The highest swellability was DG-2 formulation prepared with corn starch. Whereas, the lowest floatability in water was DG-2 formulation, while the highest one was DG-1 formulation prepared with pregelatinized starch, Miragel 463. The degradation rates of dicamba in the granules under the elevated temperature of $50^{\circ}C$ were less than 5% for DG-1 and DG-2 formulations even after 90 days, meanwhile, those of DE-1 formulations prepared with pregelatinized starch, Mirasperse, were more than 5%. The release rates of A.I. from the granules into water under a static condition were about 100% after 2 weeks. Weeding effects of the granules on broad leaf weeds tested in greenhouse were more than 90% after 30 days.

  • PDF

Distribution Patterns of Organophosphorous Insecticide Chlorpyrifos Absorbed from Soil into Cucumber (토양에 잔류된 살충제 Chlorpyrifos의 오이 흡수이행 및 분포 양상)

  • Hwang, Jeong-In;Jeon, Sang-Oh;Lee, Sang-Hyeob;Lee, Sung-Eun;Hur, Jang-Hyun;Kim, Kwon-Rae;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.148-155
    • /
    • 2014
  • The transfer pattern of chlorpyrifos present in soil to cucumber plants were assessed and reported with plant growth, concentration dependency, and duration. Cucumber seedlings cultivated in a growth chamber for 30 days and a greenhouse for 120 days. Weight and length of cucumbers cultivated in the chamber increased with the increasing time, while the uptake of chlorpyrifos by cucumber increased a period from 0 to 15 days and decreased after 15 days. Uptake rates of chlorpyrifos into a cucumber plant were 1.0~1.3% to initial amounts treated with 20 and 40 mg/kg to soil. Most chlorpyrifos residues were detected in root, followed by stem and leaf. Results of the greenhouse test showed that chlorpyrifos amounts in cucumber fruits were present less than LOQ (0.02 mg/kg), and chlorpyrifos was mainly found in the root of the cucumber plant. Chlorpyrifos absorbed in a cucumber under greenhouse condition was smaller than that in chamber condition as 0.03~0.04%. Degradation patterns of chlorpyrifos in soils were similar during indoor and outdoor tests with half-lives of 25.8~73.0 days. These results may be useful for establishing the management strategy of residual pesticides in soil environment.

Degradation Ability and Population of Resistant Strains of Chlorothalonil in Upland Soil Distributed in Honam Area (호남지역 밭토양에 분포된 Chlorothalonil 내성균(耐性菌)의 밀도(密度)와 분해능(分解能))

  • Lee, Sang-Bok;Choi, Yoon-Hee;Yoo, Chul-Hyun;So, Jae-Don;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.74-80
    • /
    • 1996
  • This experiment was conducted to obtain the basis of degradation of remaining agricultural chemicals accumulated in upland soils of Honam district in Korea. The population. relative growth rate(RGR). chlorothalonil(TPN)-degradation ability and bacterialogical characteristics of TPN resistant strains were investigated in TPN levels of 0, 25, 50, 100 and $500{\mu}l/ml$ compared with Mancozeb. A number of TPN-resistant bacteria were differ in the area of examined and were decreased with higher levels of TPN. The resistance of bacteria was stronger in TPN than Mancozeb but the resistance of fungi was vise versa. RGR of bacteria in the culture was the highest at the level of $50{\mu}l/ml$ and the lowest in $500{\mu}l/ml$ of TPN. TPN-degradation ability of bacteda isolated in various TPN levels was varied : only 8 percentage of bacteria showed 75 percentage or more degradation ability. The higher the concentration in TPN resistance, the larger the number of strains carried great ability to decompose pesticide residues. The strains having higher decomposition ability was rod-shapes cells and senstive to heat. Analyses of the indol production, methyl red, and V-P test have given similar results, with negative reaction in all these strain, while the other biochemical characteristics were differ in the strains. Based on these, these strains might be classified into Pseudomonas sp., Corynebacterium sp., Acinetobacter sp. and Moraxcella sp.

  • PDF

Evaluation for Safety of Tricyclazole (I) (살균제 Tricyclazole에 대한 안전성 평가 (I))

  • Hwang, In-Young;Choi, Eui-Ju;Roh, Jung-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 1985
  • Fate of tricyclazole in rice paddy system was studied. The effect on soil microorganism as well as the mutagenicity of the compound was also examined. The residues of tricyclazole in crops and soil with two times application before harvest were 0.37 in unpolished rice, 0.29 in polished rice, 0.14 in rice straw, and 0.15 ppm in paddy soil. With three times of application the residues were increased to 0.46, 0.39, and 0.19 ppm, respectively. Until $2{\sim}3$ weeks after treatment of pesticide the degradation of tricyclazole was progressed comparatively but very slowly afterward and the half life of that was about $140{\sim}180$ days. There was no effect for viable count of soil microorganisms and for mutagenic test by Salmonella and Saccharomyces systems.

  • PDF

Adsorption and Degradation of Procymidone in Ginseng Cultivating Soils (인삼 재배토양에서의 Procymidone 흡착 및 분해)

  • Kim, Hyo-Keun;Lee, Yun-Hwan;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.286-290
    • /
    • 2002
  • This work has been conducted to investigate the behavior of pesticides in ginseng(Panax ginseng C. A. Meyer) cultivation environment, with a fungicide procymidone as a model pesticide. Procymidone adsorption on ginseng cultivating soil was studied and persistency of procymidone in soil was monitored in indoor incubation experiments at 25$^{\circ}C$ and 10$^{\circ}C$. The soil adsorption coefficients($K_{oc}$) of procymidone were in the range of 513$\sim$743 suggesting the mobility of procymidone in soil is relatively low. Procymidone showed higher persistency in soil under indoor incubation condition than outdoor field condition. The half lives estimated from the first order reaction kinetics were 248 days and 330 days at 25$^{\circ}C$ and 10$^{\circ}C$, respectively.

Exposure to ethylene thiourea degrades the sperm ability of mammals

  • Adikari Arachchige Dilki Indrachapa Adikari;Malavi Arachchi Gamage Nayodya Dananjanee Malavi Arachchi Gamage;Wijesooriya Mudhiyanselage Nadeema Dissanayake;Jung Min Heo;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.109-121
    • /
    • 2024
  • Mancozeb is a manganese and zinc-containing fungicide that belongs to the ethylene bisdithiocarbamate group and produces ethylene thiourea (ETU) after biotransformation or environmental degradation, which has toxicological hazard owing to its known antithyroid properties. Although mancozeb leads to negative changes in fertility capacity, the effects of ETU are less known. Therefore, this study examined the alteration of fertilization competence in boar spermatozoa exposed to ETU. The sperm motility, motion kinematics, viability, acrosome integrity, chromatin stability, and intracellular reactive oxygen species (ROS) production of sperm subjected to various ETU concentrations (10, 50, 100, and 200 µM) were evaluated after two different incubation times (30 min and 2 hrs). In addition, the relative mRNA expression of the sperm functional proteins was analyzed after exposure to ETU. A dose-dependent motility reduction was observed in sperm exposed to ETU during both incubation periods compared to the controls. The motion kinematics were reduced significantly in sperm incubated with ETU. Higher percentages of viable sperm were observed in the controls, while such viability was decreased significantly in sperm with 10 - 200 µM ETU. The acrosome integrity was particularly damaged on sperm incubated with 10 - 200 µM ETU for 30 min. Higher intracellular ROS levels were produced in sperm exposed to 200 µM ETU. In addition, lower relative levels of AKAP3, AKAP4, ODF2, and ZPBP2 expression were observed in sperm exposed to ETU compared to the controls. Mancozeb and ETU could adversely affect the reproductive functions of mammals. Hence, the effects of ETU on the reproductive system should be examined further.

Residue Patterns of Procymidone, Chlorpyrifos and Cypermethrin in Peaches During Cultivation and Storage Period (복숭아의 재배 및 저장기간 중 Procymidone, Chlorpyrifos 및 Cypermethrin의 잔류량 변화)

  • Lee, Yong-Jae;Ko, Kwang-Yong;Won, Dong-Jun;Gil, Geun-Hwan;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.220-226
    • /
    • 2003
  • The residue patterns of procymidone, chlorpyrifos and cypermethrin in peaches were examined. The pesticides were sprayed at 15 days before harvest and then were determined the residue at 0, 1, 2, 3, 5, 7, 10 and 15 days after pesticide application and calculated their $DT_{50}$. Also, the degradation patterns at $4^{\circ}C$ and $20^{\circ}C$ during storage period were compared. Biological half-lives of procymidone, chlorpyrifos and cypermethrin in peaches during the cultivation period were 3.1, 7.2 and 10.4 days, respectively. The biological half -life of procymidone was shorter than the others. During the storage period, half-lives of procymidone, chlorpyrifos and cypermethrin were 16.0, 14.3 and 13.1 days at $4^{\circ}C$ and 4.6, 10.2 and 12.9 days at $20^{\circ}C$, respectively. The degradation rates of these three pesticides in storage period were slower than them in cultivation period. Removal rates were $22.2{\sim}82.9%$ by tap water, and $12.5{\sim}88.8%$ by detergent solution.

Biodegradation of Chlorpyrifos (CP) by a Newly Isolated Naxibacter sp. Strain CY6 and Its Ability to Degrade CP in Soil (신규 Naxibacter sp. CY6에 의한 Chlorpyrifos (CP) 분해 및 토양에서 CP 분해능)

  • Kim, Chul Ho;Choi, Jin Sang;Jang, In Surk;Cho, Kye Man
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • A bacterium, isolated from a vegetable field in a plastic film house and named strain CY6 was capable of biodegrading chlorpyrifos (CP). Based on the phenotypic features and the phylogenetic similarity of 16S rRNA gene sequences, strain CY6 was identified as a Naxibacter sp.. CP was utilized as the sole source of carbon and phosphorus by Naxibacter sp. CY6. We examined the role of this Naxibacter sp. in the degradation of other OP insecticides under liquid cultures. Parathion, methyl parathion, diazinon, cadusafos, and ethoprop could also be degraded by Naxibacter sp. CY6 when they are provided as the sole sources of carbon and phosphorus. Additionally, Naxibacter sp. CY6 ($10^8$ CFU/g) added to soil with CP (100 mg/kg) resulted in a higher degradation rate of approximately 90% than the rate obtained from uninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide soil.