DOI QR코드

DOI QR Code

Biodegradation of Chlorpyrifos (CP) by a Newly Isolated Naxibacter sp. Strain CY6 and Its Ability to Degrade CP in Soil

신규 Naxibacter sp. CY6에 의한 Chlorpyrifos (CP) 분해 및 토양에서 CP 분해능

  • Kim, Chul Ho (Institute of Fusion Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Choi, Jin Sang (Institute of Fusion Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Jang, In Surk (Institute of Fusion Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Cho, Kye Man (Institute of Fusion Biotechnology, Gyeongnam National University of Science and Technology)
  • 김철호 (경남과학기술대학교 바이오융합연구소) ;
  • 최진상 (경남과학기술대학교 바이오융합연구소) ;
  • 장인석 (경남과학기술대학교 바이오융합연구소) ;
  • 조계만 (경남과학기술대학교 바이오융합연구소)
  • Received : 2013.02.21
  • Accepted : 2013.03.22
  • Published : 2013.03.31

Abstract

A bacterium, isolated from a vegetable field in a plastic film house and named strain CY6 was capable of biodegrading chlorpyrifos (CP). Based on the phenotypic features and the phylogenetic similarity of 16S rRNA gene sequences, strain CY6 was identified as a Naxibacter sp.. CP was utilized as the sole source of carbon and phosphorus by Naxibacter sp. CY6. We examined the role of this Naxibacter sp. in the degradation of other OP insecticides under liquid cultures. Parathion, methyl parathion, diazinon, cadusafos, and ethoprop could also be degraded by Naxibacter sp. CY6 when they are provided as the sole sources of carbon and phosphorus. Additionally, Naxibacter sp. CY6 ($10^8$ CFU/g) added to soil with CP (100 mg/kg) resulted in a higher degradation rate of approximately 90% than the rate obtained from uninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide soil.

채소 재배 비닐하우스 토양으로부터 chlorpyrifos (CP) 분해능을 지니고 있는 CY6 균주를 분리하였다. 형태학적 특징 및 16S rRNA 염기서열의 계통발생학적 유사성을 기초로 CY6 균주는 Naxibacter sp.로 확인되었다. CP는 Naxibacter sp. CY6 의해 탄소 및 인의 단일원으로 이용되었다. 우리는 액체배양에서 Naxibacter sp. CY6의 다른 OP 살충제 분해 양상을 살펴 보았다. Naxibacter sp. CY6는 parathion 및 methyl parathion, diazinon, cadusafos, ethoprop를 분해할 수 있었으며, 이 때 이들은 탄소 및 인의 단일원으로 제공되었다. 또한, CP (100 mg/kg)가 함유된 토양에 Naxibacter sp. CY6 ($10^8$ CFU/g)를 접종한 것이 접종하지 않은 토양에서 보다 약 90%의 높은 분해 정도를 나타냈었다. Naxibacter sp. CY6는 살충제가 오염된 토양의 정화에 사용할 수 있는 잠재성을 지니고 있다.

Keywords

References

  1. Anwar, S., Liaquat, F., Khan, Q.M., Khalid, Z.M., and Iqbal, S. 2009. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J. Hazard Mat. 168, 400-405. https://doi.org/10.1016/j.jhazmat.2009.02.059
  2. Cho, K.M., Math, R.K., Islam, S.M.A., Lim, W.J., Hong, S.Y., Kim, J.M., Yun, M.G., Cho, J.J., and Yun, H.D. 2009. Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J. Agric. Food Chem. 57, 1882-1889. https://doi.org/10.1021/jf803649z
  3. Fu, G., Cui, Z., Huang, T., and Li, S. 2004. Expression, purification, and characterization of novel methyl parathion hydrolase. Protein Expr. Purif. 36, 170-176. https://doi.org/10.1016/j.pep.2004.04.019
  4. Islam, S.M.D., Math, R.K., Cho, K.M., Lim, W.J., Hong, S.Y., Kim, J.M., Yun, M.G., Cho, J.J., and Yun, H.D. 2010. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. J. Agric. Food Chem. 58, 5380-5386. https://doi.org/10.1021/jf903878e
  5. Kertesz, M.A., Cook, A.M., and Leisinger, T. 1994. Microbial metabolism of sulfur and phosphorus-containing xenobiotics. FEMS Microbiol. Rev. 15, 195-215. https://doi.org/10.1111/j.1574-6976.1994.tb00135.x
  6. Li, X., He, J., and Li, S. 2007. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res. Microbiol. 158, 143-149. https://doi.org/10.1016/j.resmic.2006.11.007
  7. Liu, H., Zhang, J.J., Wang, S.J., Zhang, Z.E., and Zhou, N.Y. 2005. Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem. Biophys. Res. Commun. 334, 1107-114. https://doi.org/10.1016/j.bbrc.2005.07.006
  8. Maya, K., Shigh, R.S., Upadhyay, S.N., and Dubey, S.K. 2011. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Proc. Biochem. 46, 2130-2136. https://doi.org/10.1016/j.procbio.2011.08.012
  9. Molina, L., Ramos, C., Duque, E., Ronchel, M.C., Garcia, J.M., Wyke, L., and Ramos, J.L. 2000. Survival of Pseudomonas putida KT2440 in soil and in the rhizophere of plants under greenhouse and environmental conditions. Soil Biol. Biochem. 32, 316-321.
  10. Mulbry, W.W., Karns, J.S., Kearney, P.C., Nelson, J.O., McDaniel, C.S., and Wild, J.R. 1986. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl. Environ. Microbiol. 51, 926-930.
  11. Racke, K.D., Laskowski, D.A., and Schultzon, M.R. 1990. Resistance of chlorpyrifos to enhanced biodegradation in soil. J. Agric. Food Chem. 38, 1430-1436. https://doi.org/10.1021/jf00096a029
  12. Rani, N.L. and Lalitha-Kumari, D. 1994. Degradation of methyl parathion by Pseudomonas putida. Can. J. Microbiol. 4, 1000-1004.
  13. Rosenberg, A. and Alexander, M. 1979. Microbial cleavage of various organophosphorus insecticides. Appl. Environ. Microbiol. 37, 886-891.
  14. Sardar, D. and Kole, R.K. 2005. Metabolism of chlorpyrifos in relation to its effect on the availability of some plant nutrients in soil. Chemosphere 61, 1273-1280. https://doi.org/10.1016/j.chemosphere.2005.03.078
  15. Sethunathan, N.N. and Yoshida, T. 1973. A Flavobacterium that degrades diazinon and parathion. Can. J. Microbiol. 19, 873-875. https://doi.org/10.1139/m73-138
  16. Shelton, D.R. 1988. Mineralization of diethylthiophosphoric acid by an enriched consortium form cattle dip. Appl. Environ. Microbiol. 54, 2572-2573.
  17. Singh, B.K., Walker, A., Morgan, J.A.W., and Wright. D.J. 2004. Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl. Environ. Microbiol. 70, 4855-4863. https://doi.org/10.1128/AEM.70.8.4855-4863.2004
  18. Wang, S., Zhang, C., and Yan, Y. 2012. Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12. Biodegradation 23, 107-116. https://doi.org/10.1007/s10532-011-9490-0
  19. Xu, P., Li, W.J., Tang, S.K., Zhang, Y.Q., Chen, G.Z., Chen, H.H., Xu, L.H., and Jiang, C.L. 2005. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int. J. Syst. Evol. Microbiol. 55, 1149-1153. https://doi.org/10.1099/ijs.0.63407-0
  20. Xu, G., Zheng, W., Li, Y., Wang, S., Zhang, J., and Yan, Y. 2008. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int. Biodeterior. Biodegrad. 62, 51-56. https://doi.org/10.1016/j.ibiod.2007.12.001
  21. Yang, C., Liu, N., Guo, X., and Qiao, C. 2006. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol. Lett. 265, 118-125. https://doi.org/10.1111/j.1574-6968.2006.00478.x
  22. Yang, J., Yang, C., Jiang, H., and Qiao, C. 2008. Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 19, 831-839. https://doi.org/10.1007/s10532-008-9186-2
  23. Yang, L., Zhao, Y.H., Zhang, B.X., Yang, C.H., and Zhang, X. 2005. Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol. Lett. 251, 67-73. https://doi.org/10.1016/j.femsle.2005.07.031
  24. Zhang, R., Cui, Z., Jiang, J., He, J., Gu, X., and Li, S. 2005. Diversity of organophophorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can. J. Micrboiol. 51, 337-343. https://doi.org/10.1139/w05-010
  25. Zhang, Z., Hong, Q., Xu, J., Zhang, X., and Li, S. 2006. Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation 17, 275-283. https://doi.org/10.1007/s10532-005-7130-2

Cited by

  1. Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process vol.150, 2016, https://doi.org/10.1016/j.chemosphere.2015.12.044
  2. Temperature Impacts on Soil Microbial Communities and Potential Implications for the Biodegradation of Turfgrass Pesticides vol.46, pp.3, 2013, https://doi.org/10.2134/jeq2017.02.0067