• Title/Summary/Keyword: pervious concrete

Search Result 25, Processing Time 0.024 seconds

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete

  • Zhang, Yuanbo;Zhang, Wuman;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • Portland cement pervious concrete has been expected to have good water permeability, mechanical properties and abrasion resistance at the same time when Portland cement pervious concrete is applied to the actual vehicle pavement. In this study, the coarse aggregate and cement were replaced by the fine aggregate and the silica fume to improve actual road performance Portland cement pervious concrete. The Mechanical properties, the water permeability and the abrasion resistance of Portland cement pervious concrete were investigated. The results show that the compressive strength, the flexural strength and the abrasion resistance are increased when the fine aggregate and the silica fume are added to Portland cement pervious concrete separately. However, the porosity and the water permeability are decreased simultaneously. With assistance of silica fume and fine aggregate simultaneously, Portland cement pervious concrete could achieve a higher strength. The compressive strength, the flexural strength and the abrasion resistance of Portland cement pervious concrete mixed with 5% fine aggregates and 8% silica fume are increased by 93.1%, 65% and 65.2%, respectively. The porosity and the water permeability are decreased by 22.4% and 85% when Portland cement pervious concrete is mixed with 5% fine aggregate and 8% silica fume. Therefore, the replacement ratio of the fine aggregates and the silica fume should be considered comprehensively and determined on the premise of ensuring the water permeability coefficient.

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.

Properties of pervious concrete containing high-calcium fly ash

  • Sata, V.;Ngohpok, C.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.337-351
    • /
    • 2016
  • This paper presents the properties of pervious concrete containing high-calcium fly ash. The water to binder ratios of 0.19, 0.22, and 0.25, designed void ratios of 15, 20, and 25%, and fly ash replacements of 10, 20, and 30% were used. The results showed that the use of fly ash as partial replacement of Portland cement enhanced the mixing of paste resulting in a uniform mix and reduced amount of superplasticizer used in the mixture. The compressive strength and flexural strength of pervious concrete were slightly reduced with an increase in fly ash replacement level, while the abrasion resistance increased due mainly to the pozzolanic and filler effects. The compressive strength and flexural strengths at 28 days were still higher than 85% of the control concrete. The aggregate size also had a significant effect on the strength of pervious concrete. The compressive strength and flexural strength of pervious concrete with large aggregate were higher than that with small aggregate.

Experimental study on the dynamic behavior of pervious concrete for permeable pavement

  • Bu, Jingwu;Chen, Xudong;Liu, Saisai;Li, Shengtao;Shen, Nan
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.291-303
    • /
    • 2018
  • As the concept of "sponge city" is proposed, the pervious concrete for permeable pavement has been widely used in pavement construction. This paper aims at investigating the dynamic behavior and energy evolution of pervious concrete under impact loading. The dynamic compression and split tests are performed on pervious concrete by using split Hopkinson pressure bar equipment. The failure criterion on the basis of incubation time concept is used to analyze the dynamic failure. It is demonstrated that the pervious concrete is of a strain rate sensitive material. Under high strain rate loading, the dynamic strength increases while the time to failure approximately decreases linearly as the strain rate increases. The predicted dynamic compressive and split tensile strengths based on the failure criterion are in accordance with the experimental results. The total damage energy is found to increase with the increasing of strain rate, which means that more energy is needed to produce irreversible damage as loading rate increases. The fractal dimensions are observed increases with the increasing of impact loading rate.

Application of waste tire rubber aggregate in porous concrete

  • Shariati, Mahdi;Heyrati, Arian;Zandi, Yousef;Laka, Hossein;Toghroli, Ali;Kianmehr, Peiman;Safa, Maryam;Salih, Musab N.A.;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.553-566
    • /
    • 2019
  • This study aimed to categorize pervious rubberized concrete into fresh and hardened concrete analyzing its durability, permeability and strength. During the globalization of modern life, growing population and industry rate have signified a sustainable approach to all aspects of modern life. In recent years, pervious concrete (porous concrete) has significantly substituted for pavements due to its mechanical and environmental properties. On the other hand, scrap rubber tire has been also contributed with several disposal challenges. Considering the huge amount of annually tire wastes tossing out, the conditions become worse. Pervious concrete (PC) gap has graded surface assisted with storm water management, recharging groundwater sources and alleviate water run-offs. The results have shown that the use of waste tires as aggregate built into pervious concrete has tremendously reduced the scrap tire wastes enhancing environmental compliance.

Moving particle simulation for a simplified permeability model of pervious concrete

  • Kamalova, Zilola;Hatanaka, Shigemitsu
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.571-578
    • /
    • 2019
  • This study aimed to investigate the permeable nature of pervious concretes (PC) through the moving particle simulation (MPS) method. In the simulation, the complex structure of a pervious concrete was virtually demonstrated as a lattice model (LM) of spherical beads, where the test of permeability was conducted. Results of the simulation were compared with the experimental ones for validation. As a result, MPS results showed the permeability index of the LM as almost twice as big as the actual PCs. A proposed virtual model was created to prevent the stuck of water flow in the MPS simulation of PC or LM. Successful simulation results were demonstrated with the model.

Comparative study on bearing characteristics of pervious concrete piles in silt and clay foundations

  • Cai, Jun;Du, Guangyin;Xia, Han;Sun, Changshen
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.595-604
    • /
    • 2021
  • With the advantages of high permeability and strength, pervious concrete piles can be suitable for ground improvement with high water content and low bearing capacity. By comparing the strength and permeability of pervious concrete with different aggregate sizes (3-5 mm and 4-6 mm) and porosities (20%, 25%, 30% and 35%), the recommended aggregate size (3-5 mm) and porosity (30%) can be achieved. The model tests of the pervious concrete piles in soft soil (silt and clay) foundations were conducted to evaluate the bearing characteristics, results show that, for the higher consolidation efficiency of the silty foundation, the bearing capacity of the silty foundation is 16% higher, and the pile-soil stress ratio is smaller. But when it is the ultimate load for the piles, they will penetrate into the underlying layer, which reduces the pile-soil stress ratios. With higher skin friction of the pile in the silty foundation, the pile penetration is smaller, so the decrease of the pile axial force can be less. For the difference in consolidation efficiency, the skin friction of pile in silt is more affected by the effective stress of soil, while the skin friction of pile in clay is more affected by the lateral stress. When the load reaches 4400 N, the skin friction of the pile in the silty foundation is about 35% higher than that of the clay foundation.

Porous concrete with optimum fine aggregate and fibre for improved strength

  • Karanth, Savithri S.;Kumar, U. Lohith;Danigond, Naveen
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.305-309
    • /
    • 2019
  • Pervious concrete pavements are the need of the day to avoid urban flooding and to facilitate ground water recharge. However, the strength of pervious or porous concrete is considerably less compared to conventional concrete. In this experimental investigation, an effort is made to improve the strength of pervious concrete by adopting fibres and a small amount of fine aggregate. A porous concrete with cement to aggregate ratio of 1:5 and a water-powder ratio of 0.4 is adopted. 30% of the cement is replaced by cementitious material ground granulated blast furnace slag (GGBS) for better strength and workability. Recron fibres at a dosage of 0.5, 1.0 and 1.5% by weight of cement were included to improve the impact strength. Since concrete pavements are subjected to impact loads, the impact strength was also calculated by "Drop ball method" in addition to compressive strength. The effect of fine aggregate and recron fibres on workability, porosity, compressive and impact strength was studied. The investigations have shown that 20% inclusion of fine aggregate and 1.5% recron fibres by weight of cement give better strength with an acceptable range of porosity.

Evaluation of Mechanical Properties of Porous and Pervious Light-weight Concrete by Mixing Proportion (다공성, 투수성 경량콘크리트의 배합비에 따른 물리적 특성 평가)

  • Ahn, Hwi-Soon;Shin, Hyun-Oh;SeonWoo, Yoon-Ho;Song, Si-Bum;Jung, Kwang-Sik;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.305-306
    • /
    • 2010
  • Recently, concrete have been used not only for structural purpose but also for various other purposes. The goal of this research is to develop porous and pervious light-weight concrete in order to apply to filters, which primarily treats rain water. Because Porous and pervious light-weight concrete is discontinuum with large amount of porosity, its physical characteristic is completely different from that of ordinary concrete. The basic properties such as the change in porosity rate depending on mixing proportion and the mechanical characteristics of porous and pervious light-weight concrete were experimentally evaluated.

  • PDF