• Title/Summary/Keyword: pertussis toxin

Search Result 71, Processing Time 0.031 seconds

The activation of α2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality

  • Kim, Sung-Su;Park, Soo-Hyun;Lee, Jae-Ryung;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.495-507
    • /
    • 2017
  • The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; $27{\mu}g/27{\mu}l$) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine ($5{\mu}g/5{\mu}l$) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) induced by sepsis. Clonidine administered i.t. or i.p. increased $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.

Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells

  • Jeong, Ji Young;Son, Younghae;Kim, Bo-Young;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.549-555
    • /
    • 2015
  • We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors /PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.

The regulatory mechanism of insulin like growth factor secretion by high glucose in mesangial cell: involvement of cAMP (Mesangial 세포에서 고포도당에 의한 insulin-like growth factor의 분비조절기전에 관한 연구: cAMP와의 관련성)

  • Heo, Jung-sun;Kang, Chang-won;Han, Ho-jae;Park, Soo-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.563-571
    • /
    • 2003
  • Dysfunction of mesangial cells has been contributed to the onset of diabetic nephropathy. Insulin like growth factors (IGFs) are also implicated in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion in the mesangial cells. Furthermore, the relationship between cAMP and high glucose on the secretion of IGFs was not elucidated. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. Glucose increased IGF-I secretion in a time- (>8 hr) and dose- (>15 mM) dependent manner (p<0.05). Stimulatory effect of high glucose on IGF-I secretion is predominantly observed in 25 mM glucose (high glucose), while 25 mM glucose did not affect cell viability and lactate dehydrogenase release. High glucose also increased IGF-II secretion. The increase of IGF-I and IGF-II secretion is not mediated by osmotic effect, since mannitol and L-glucose did not affect IGF-I and IGF-II secretion. 8-Br-cAMP mimicked high glucose-induced secretion of IGF-I and IGF-II. High glucose-induced stimulation of IGF-I and IGF-II secretion was blocked not by pertussis toxin but by SQ 22536 (adenylate cyclase inhibitor). Rp-cAMP (cAMP antagonist), and myristoylated protein kinase A (PKA) inhibitor amide 14-22 (protein kinase A inhibitor). These results suggest that cAMP/PKA pathways independent of Gi protein may mediate high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. Indeed, glucose (>15 mM glucose) increased cAMP formation. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via cAMP/PKA pathway in mesangial cells.

Chemotactic Effect of Leukotactin-1/CCL15 on Human Neutrophils

  • Lee Ji-Sook;Yang Eun-Ju;Ryang Yong-Suk;Kim In-Sik
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.145-151
    • /
    • 2006
  • Leukotactin-l (Lkn-l )/CCL15 has been known as a potent chemoattractant of leukocytes. However, the precise function of Lkn-l in human neutrophils has not been explained well. In the present study, we investigated the contribution of Lkn-1 in chemotactic activity of human neutrophils. Both CCR1 and CCR3 mRNA expressions are strongly expressed in human neutrophils but CCR2 protein expression was uniquely detected on the cell surface. Lkn-l binding to CCR1 and CCR3 induced chemotactic activity of neutrophils. Chemotactic index of Lkn-l was comparable to that of IL-8. $MIP-1{\alpha}/CCL3$ binding to CCR1 and CCR5 has no effect on neutrophil migration. Cell migration, in response to Lkn-l, was blocked by pertussis toxin (Ptx), a $G_o/G_i$ protein inhibitor, and U73122, a phospholipase C(PLC) inhibitor but not by protein kinase C inhibitor such as rottlerin, and Ro-31-8425. Taken together, our results demonstrate that Lkn-l transduces the chemotaxis signal through $G_o/G_i$ protein and PLC. This finding provides the molecular mechanism by which Lkn-l may contribute to neutrophil movement into the site of inflammation.

  • PDF

Promotion of formyl peptide receptor 1-mediated neutrophil chemotactic migration by antimicrobial peptides isolated from the centipede Scolopendra subspinipes mutilans

  • Park, Yoo Jung;Lee, Sung Kyun;Jung, Young Su;Lee, Mingyu;Lee, Ha Young;Kim, Sang Doo;Park, Joon Seong;Koo, JaeHyung;Hwang, Jae Sam;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.520-525
    • /
    • 2016
  • We investigated the effects of two antimicrobial peptides (AMPs) isolated from Scolopendra subspinipes mutilans on neutrophil activity. Stimulation of mouse neutrophils with the two AMPs elicited chemotactic migration of the cells in a pertussis toxin-sensitive manner. The two AMPs also stimulated activation of ERK and Akt, which contribute to chemotactic migration of neutrophils. We found that AMP-stimulated neutrophil chemotaxis was blocked by a formyl peptide receptor (FPR) 1 antagonist (cyclosporin H); moreover the two AMPs stimulated the chemotactic migration of FPR1-expressing RBL-2H3 cells but not of vector-expressing RBL-2H3 cells. We also found that the two AMPs stimulate neutrophil migration in vivo, and that this effect is blocked in FPR1-deficient mice. Taken together, our results suggest that the two AMPs stimulate neutrophils, leading to chemotactic migration through FPR1, and the two AMPs will be useful for the study of FPR1 signaling and neutrophil activation.

Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent $G_s$ signaling during $\beta_2$-adrenergic stimulation

  • Jo, Su-Hyun
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.29-29
    • /
    • 2003
  • Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of $\beta$$_2$-adrenoceptor ($\beta$$_2$-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of $\beta$$_2$-AR-coupled $G_{i}$ proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the $\beta$$_2$-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the $\beta$$_2$-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables $\beta$$_2$-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in $\beta$$_2$-AR-induced cAMP formation. Blocking $G_{i}$ or $G_{$\square$$\square$}$ signaling with pertussis toxin or $\beta$ARK-ct, a peptide inhibitor of $G_{$\square$$\square$}$, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of $\beta$$_2$-AR-PKA siglaling sequentially involves $G_{i}$, $G_{$\square$$\square$}$, and PI3K. Thus, PI3K constitutes a key downstream event of $\beta$$_2$-AR- $G_{i}$ signaling, which confines and negates the concurrent $\beta$$_2$-AR/Gs-mediated PKA signaling.gnaling.

  • PDF

Increase of Membrane Potential by Ginsenosides in Prostate Cancer and Glioma cells

  • Lee, Yun-Kyung;Im, Young-Jin;Kim, Yu-Lee;Sacket Santosh J.;Lim, Sung-Mee;Kim, Kye-Ok;Kim, Hyo-Lim;Ko, Sung-Ryong;Lm, Dong-Soon
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.70-77
    • /
    • 2006
  • Ginseng has an anti-cancer effect in several cancer models. As a mechanism study of ginsenoside-induced growth inhibition in cancer cells, we measured change of membrane potential in prostate cancer and glioma cells by ginsenosides, active constituents of ginseng. Membrane potential was estimated by measuring fluorescence change of DiBAC-Ioaded cells. Among 11 ginsenosides tested, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased significantly and robustly the membrane potential in a concentration-dependent manner in prostate cancer and glioma cells. Ginsenosides Rc, Ro, and $Rb_1$ slightly increased membrane potential. The ginsenoside-induced membrane potential increase was not affected by treatment with pertussis toxin or U73122. The ginsenoside-induced membrane potential increase was not diminished in $Na^+$-free or $HCO_3^-$-free media. Furthermore, the ginsenoside-induced increase of membrane potential was not changed by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), SITS (4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid), and omeprazole. In summary, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased membrane potential in prostate cancer and glioma cells in a GPCR-independent and $Na^+$ independent manner.

Adhesion-induced generation of oxygen free radical from human alveolar macrophages and its mechanisms (폐포대식세포의 부착에 의한 산소유리기 분비능 활성화 및 그 기전)

  • Chung, Man-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.210-220
    • /
    • 1996
  • Background : Neutrophils or monocytes separated in vitro by the adherence to plastic surface are known to be activated by surface adherence itself and subsequent experimental data might be altered by surface adherence. In the process of surface adherence, adhesion molecules have a clear role in intracellular signal pathway of cellular activation. Human alveolar macrophages(HAM) are frequently purified by the adherence procedure after bronchoalveolar lavage. But the experimental data of many reports about alveolar macrophages have ignored the possibility of adhesion-induced cellular activation. Method : Bronchoalveolar lavage was performed in the person whose lung of either side was confirmed to be normal by chest CT. With the measurement of hydrogen peroxide release from adherent HAM to plastic surface and non-adherent HAM with or without additional stimulation of phorbol myristate acetate(PMA) or N-formyl-methionyl-leucyl-phenylalanine (fMLP), we observed the effect of the adherence to plastic surface. We also evaluated the effect of various biological surfaces on adhesion-induced activation of HAM. Then, to define the intracellular pathway of signal transduction, pretreatment with cycloheximide, pertussis toxin and anti-CD11/CD18 monoclonal antibody was done and we measured hydrogen peroxide in the culture supernatant of HAM. Results : 1) The adherence itself to plastic surface directly stimulated hydrogen peroxide release from human alveolar macrophages and chemical stimuli such as phorbol myristate acetate(PMA) or N-formyl-methionyl-leucyl-phenylalanine(fMLP) colud not increase hydrogen peroxide release in these adherent macrophages which is already activated. 2) PMA activated human alveolar macrophages irrespective of the state of adhesion. However, fMLP stimulated the release of hydrogen peroxide from the adherent macrophages, but not from the non-adherent macrophages. 3) HAM adherent to A549 cell(type II alveolar epithelium-like human cell line) monolayer released more hydrogen peroxide in response to both PMA and fMLP. This adherence-dependent effect of fMLP was blocked by pretreatment of macrophages with cycloheximide, pertussis toxin and anti-CD18 monoclonal antibody, Conclusion : These results suggest that the stimulatory effect of PMA and fMLP can not be found in adherent macrophage because of the activation of human alveolar macrophage by the adherence to plastic surface and the cells adhered to biologic surface such as alveolar epithelial cells are appropriately responsive to these stimuli. It is also likely that the effect of fMLP on the adherent macrophage requires new protein synthesis via G protein pathway and is dependent on the adhesion between alveolar macrophages and alveolar epithelial cells by virtue of CD11/CD18 adhesion molecules.

  • PDF

Sphingosine-1-Phosphate-Induced Migration and Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells (Sphingosine-1-phosphate에 의한 중간엽 줄기세포의 이동과 평활근세포로의 분화)

  • Song, Hae-Young;Shin, Sang-Hun;Kim, Min-Young;Kim, Jae-Ho
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.183-193
    • /
    • 2011
  • Migration and differentiation of mesenchymal stem cells are crucial for tissue regeneration in response to injury. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a variety of biological processes, including proliferation, survival, differentiation and motility. In the present study, we determined the role of S1P in migration and differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs). S1P stimulated migration of BMSCs in a dose- and time-dependent manner, and pre-incubation of the cells with pertussis toxin completely abrogated S1P-induced migration, suggesting involvement of Gi-coupled receptors in S1P-induced cell migration. S1P elicited elevation of intracellular concentration of $Ca^{2+}$ ($[Ca^{2+}]_i$) and pretreatment with VPC23019, an antagonist of $S1P_1/S1P_3$, blocked S1P-induced migration and increase of $[Ca^{2+}]_i$. Small interfering RNA-mediated knockdown of endogenous $S1P_1$ attenuated S1P-induced migration of BMSCs. Furthermore, S1P treatment induced expression of $\alpha$-smooth muscle actin ($\alpha$-SMA), a smooth muscle marker, and pretreatment with VPC23019 abrogated S1P-induced $\alpha$-SMA expression. S1P induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and pretreatment of cells with SB202190, an inhibitor of p38 MAPK, or adenoviral overexpression of a dominant-negative mutant of the p38 MAPK blocked S1P-induced cell migration and $\alpha$-SMA expression. Taken together, these results suggest that S1P stimulates migration and smooth muscle differentiation of BMSCs through an $S1P_1$-p38 MAPK-dependent mechanism.

Modulatory Effect of the Tyrosine Kinase and Tyrosine Phosphatase on the ACh-activated $K^{+}$ Channel in Adult Rat Atrial Cells

  • Chang, Kyeong-Jae;Rhie, Sang-Ho;Heo, Ilo;Kim, Yang-Mi;Haan, Jae-Hee;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.209-218
    • /
    • 1996
  • Acetylcholine (ACh) activates the inwardly rectifying muscarinic $K^{+}$ channel in rat atrial cells via pertussis toxin (PTX)-sensitive G-protein ($G_k$) coupled with the muscarinic receptor (mAChR). Although this $K^{+}\;(K_{ACh})$ channel function has reported to be modulated by the phosphorylation process, a kinase and phosphatase involved in these processes are still unclear. Since either PKA or PKC was not effective on this ATP-modulation, the present study examined the possible involvement of the protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) in the function of the $K_{ACh}$ Channel. In the inside-out (I/O) patch preparation excised from the adult rat atrial cell, when activated by 10 ${\mu}M$ ACh in the pipette and 100 ${\mu}M$ GTP in the bath, the mean open time (${\tau}_{o}$) and the channel activity ($K_{ACh}$) was 1.13 ms (n=5) and 0.19 (n=6), respectively. Following the application of 1 mM ATP into the bath, ${\tau}_{o}$ increased by 34% (1.54 ms, n=5) and $K_{ACh}$ by 66% (0.28, n=6). Channel function elevated by ATP was lasted after washout of ATP. However, this ATP-induced increase in the $K_{ACh}$ channel function did not occur in pretreated cells with genistein ($50{\sim}100 {\mu}M$), a selective PTK inhibitor, but occurred in pretreated cells with equimolar daidzein, a negative control of the genistein. On the contrary, PTP which acts on tyrosine residue conversely reversed both ATP-induced increased ${\tau}_{o}$ by 32% (1.20 ms, n=3) and $K_{ACh}$ by 41% (0.15, n=3), respectively. Taken together, these results suggest that $K_{ACh}$ channel may, at least partly, be regulated by the tyrosyl phosphorylation, although it is unclear where this process exerts on the muscarinic signal transduction pathway comprising the mAChR-$G_{k}$-the $K_{ACh}$ channel.

  • PDF