• 제목/요약/키워드: perturbed linear system

검색결과 46건 처리시간 0.023초

h-STABILITY FOR NONLINEAR PERTURBED DIFFERENCE SYSTEMS

  • Choi, Sung-Kyu;Koo, Nam-Jip;Song, Se-Mok
    • 대한수학회보
    • /
    • 제41권3호
    • /
    • pp.435-450
    • /
    • 2004
  • We show that two concepts of h-stability and h-stability in variation for nonlinear difference systems are equivalent by using the concept of $n_{\infty}$-summable similarity of their associated variational systems. Also, we study h-stability for perturbed non-linear system y(n+1) =f(n,y(n)) + g(n,y(n), Sy(n)) of nonlinear difference system x(n+1) =f(n,x(n)) using the comparison principle and extended discrete Bihari-type inequality.

평균 포인케어맵을 이용한 Noisy Field에서의 chaos거동의 검출방법 (Detecting Chaotic Motions of a Piecewise-Linear System in the Noisy Fields by Mean Poincare Maps)

  • 마호성
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.239-249
    • /
    • 1997
  • 랜덤하중 하에서의 구분적선형시스템이 갖는 노이즈의 영향으로 인해 그 특성이 많이 감소되거나 소멸된 응답거동으로부터 chaos거동을 검출하는 방법을 개발, 분석하였다. 해양에서 구조물이 받는 파력은 결정론적이 아닌 추계론적이다. 바람, 파도 그리고 조류 등에 의한 파력은 유한도의 랜던성을 갖으며, 이러한 파력은 지배적인 조화가진하중과 정규 백색노이즈를 더함으로써 표현할 수 있다. 외적 동요를 받는 시스템의 응답거동은 그 거동이 방해를 받으며, 이로 인해 chaos응답거동을 확인하기가 어려우며, 그 거동의 특성이 일반적인 랜덤거동과 다를 바가 없다. 이러한 경우, 평균 포인케어맵을 이용하여 랜덤노이즈에 의해 발견되지 않는 chaos응답거동을 식별할 수 있다. 본 연구에서는 직접수치시뮬레이션상에서 이러한 평균 포인케어맵을 만드는 방법을 개발하였으며, 얻어진 평균 포인케어맵의 적용범위에 대하여 분석하였다. 평균 포인케어맵은 노이즈가 포함된 조화가진하중을 받는 시스템의 chaos응답거동을 확인하는데 있어서 노이즈의 강도가 높을 때 일반적인 포인케어맵만으로는 놓칠 수 있는 chaos응답거동을 성공적으로 확인할 수 있음을 알아내었다. 또한 시스템의 응답거동에서 chaos의 특성이 완전히 사라지는 노이즈의 강도를 얻을 수 있음도 알아내었다.

  • PDF

Feedback control design for intelligent structures with closely-spaced eigenvalues

  • Cao, Zongjie;Lei, Zhongxiang
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.903-918
    • /
    • 2014
  • Large space structures may have resonant low eigenvalues and often these appear with closely-spaced natural frequencies. Owing to the coupling among modes with closely-spaced natural frequencies, each eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned that may cause structural instability. The subspace to an invariant subspace corresponding to closely-spaced eigenvalues is well-conditioned, so a method is presented to design the feedback control law of intelligent structures with closely-spaced eigenvalues in this paper. The main steps are as follows: firstly, the system with closely-spaced eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition method; secondly, the computation for the linear combination of eigenvectors corresponding to repeated eigenvalues is obtained; thirdly, the feedback control law is designed on the basis of the system with repeated eigenvalues; fourthly, the system with closely-spaced eigenvalues is regarded as perturbed system on the basis of the system with repeated eigenvalues; finally, the feedback control law is applied to the original system, the first order perturbations of eigenvalues are discussed when the parameter modifications of the system are introduced. Numerical examples are given to demonstrate the application of the present method.

옵저버 이론의 원자로 지논 농도 최적제어에의 응용 (Observer Theory Applied to the Optimal Control of Xenon Concentration in a Nuclear Reactor)

  • Woo, Hae-Seuk;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.99-110
    • /
    • 1989
  • 원자로 지논 농도의 최적 제어는 Linear Quadratic Regulator Problem이다. 지논 농도와 아이오다인 농도는 측정할 수 없기 때문에 최적 제어를 수행하기 위해서는 측정할 수 없는 상태 변수를 예측하는 것이 필요하다. 본 연구에서 사용된 예측방법은 Luenberger Observer를 기초로 했다. 원자로 상태 방정식은 빠른 상태 방정식(중성자 속, 핵연료 및 냉각재 온도)과 느린 상태 방정식(아이오다인, 지논)의 상호작용에 의해 Stiffness 문제가 발생되는데 이러한 시스템을 "Singularly Perturbed System"이라 한다. Stiffness문제를 해결하기 위해서 원 시스템을 느린 시스템과 빠른 시스템의 두 개의 모드로 나누는 Singular Perturbation Method를 사용한다. 예측기Observer를 이용한 원 시스템의 제어기는 느린 시스템과 빠른 시스템에 대한 분리된 예측기와 제어기의 설계에 의해 결정되어진다. 특히 원자로 상태 방정식에서는 빠른 모드는 빨리 사라지게 되므로 단지 느린 시스템에 대해서만 예측기를 설계하면 된다. 컴퓨터시뮬레이션을 통한 시험 결과는 원자로의 지논 진동은 Singular Perturbation Method와 예측기를 이용해서 거의 정확하게 효과적으로 짧은 시간내에 제어할 수 있음을 알았다.수 있음을 알았다.

  • PDF

극점감도를 이용한 제어기 설계 (Controller design by using pole-sensitivity)

  • 임동균;강진식;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.446-450
    • /
    • 1990
  • In this paper, we present a method of analysing perturbed linear system by pole sensitivity defined by the rate of pole movement with respect of perturbation. Pole sensitivity give us not only the rate of pole movement but also the directional information of the pole movement. We present a method of design of a LQR by considering the pole sensitivity and show that the suggested method guarantee the stability robustness of parameter perturbation.

  • PDF

틸팅 운동을 고려한 유체 동압 베어링의 안정성 해석 (Stability Analysis of a Fluid Dynamic Journal Bearing Considering the Tilting Motion)

  • 김명규;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.394-400
    • /
    • 2008
  • This paper presents an analytical method to investigate the stability of FDBs (fluid dynamic bearings) considering the tilting motion. The perturbed equations of motion are derived with respect to translational and tilting motion for the general rotor-bearing system with five degrees of freedom. The Reynolds equations and their perturbed equations are solved by using the FEM in order to calculate the pressure, load capacity, and the stiffness and damping coefficients. This research introduces the radius of gyration to the equations of notion in order to express the mass moment of interia with respect to the critical mass. Then the critical mass of FDBs is determined by solving the eigenvalue problem of the linear equations of motion. This research is numerically validated by comparing the stability chart of FDBs with the time response of the whirl radius obtained from the direct integration of the equations of motion. This research shows that the tilting motion is one of the major design considerations to determine the stability of rotating system. It also shows that the stability of FDBs considering only translation is overestimated in comparison with the stability of FDBs considering both translational and tilting motion.

  • PDF

Modeling, Dynamics and Control of Spacecraft Relative Motion in a Perturbed Keplerian Orbit

  • Okasha, Mohamed;Newman, Brett
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.77-88
    • /
    • 2015
  • The dynamics of relative motion in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are used, and a linear high fidelity model is developed to describe the relative motion. This model takes into account the primary gravitational and atmospheric drag perturbations. Then, this model is used in the design of a navigation, guidance, and control system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position/velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.

A State Space Analysis on the Stability of Periodic Orbit Predicted by Harmonic Balance

  • Sung, Sang-Kyung;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.67.5-67
    • /
    • 2001
  • A closed loop system with a linear plant and nonlinearity in the feedback connection is analyzed for its quasi-static orbital stability by a state-space approach. First a periodic orbit is assumed to exist in the loop which is determined by describing function method for the given nonlinearity. This is possible by selecting a proper nonlinearity and a rigorous justification of the describing function method.[1-3, 18, 20]. Then by introducing residual operator, a linear perturbed model can be formulated. Using various transformations like a modified eigenstructure decomposition, periodic-averaging, charge of variables and coordinate transformation, the stability of the periodic orbit, as a solution of harmonic balance, can be shown by investigating a simple scalar function and result of linear algebra. This is ...

  • PDF

Bang-Bang 형태의 제어기를 갖는 복합제어 (Hybrid Control with a Bang-Bang Type Controller)

  • 박규식;정형조;조상원;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 2003
  • This paper presents a hybrid (i.e., integrated passive-active) system for seismic response control of a cable-stayed bridge. Because multiple control devices are operating, a hybrid control system could alleviate some of the restrictions and limitations that exist when each system is acting alone. Lead rubber bearings are used as passive control devices to reduce the earthquake-induced forces in the bridge and hydraulic actuators are used as active control devices to further reduce the bridge responses, especially deck displacements. In the proposed hybrid control system, a linear quadratic Gaussian control algorithm is adopted as a primary controller. In addition, a secondary bang-bang type (i.e., on-off type) controller according to the responses of lead rubber bearings is considered to increase the controller robustness. Numerical simulation results show that control performances of the hybrid control system are superior to those of the passive control system and slightly better than those of the fully active control system. Furthermore, it is verified that the hybrid control system with a bang-bang type controller is more robust for stiffness perturbation than the active controller with μ-synthesis method and there are no signs of instability in the overall system whereas the active control system with linear quadratic Gaussian algorithm shows instabilities in the perturbed system. Therefore, the proposed hybrid protective system could effectively be used to seismically excited cable-stayed bridges.

  • PDF

Random Vibration Analysis of Nonlinear Structure System using Perturbation Method

  • Moon, Byung-Young;Kang, Beom-Soo;Kang, Gyung-Ju
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.243-250
    • /
    • 2001
  • Industrial machines are sometimes exposed to the danger of earthquake. In the design of a mechanical system, this factor should be accounted for from the viewpoint of reliability. A method to analyze a complex nonlinear structure system under random excitation is proposed. First, the actual random excitation, such as earthquake, is approximated to the corresponding Gaussian process far the statistical analysis. The modal equations of overall system are expanded sequentially. Then, the perturbed equations are synthesized into the overall system and solved in probabilistic way. Several statistical properties of a random process that are of interest in random vibration applications are reviewed in accordance with nonlinear stochastic problem. The obtained statistical properties of the nonlinear random vibration are evaluated in each substructure. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.

  • PDF