• Title/Summary/Keyword: personal privacy

Search Result 818, Processing Time 0.028 seconds

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.

Study of Patient Teaching in The Clinical Area (간호원의 환자교육 활동에 관한 연구)

  • 강규숙
    • Journal of Korean Academy of Nursing
    • /
    • v.2 no.1
    • /
    • pp.3-33
    • /
    • 1971
  • Nursing of today has as one of its objectives the solving of problems related to human needs arising from the demands of a rapidly changing society. This nursing objective, I believe, can he attained by the appropriate application of scientific principles in the giving of comprehensive nursing care. Comprehensive nursing care may be defined as nursing care which meets all of the patient's needs. the needs of patients are said to fall into five broad categories: physical needs, psychological needs, environmental needs, socio-economic needs, and teaching needs. Most people who become ill have adjustment problems related to their new situation. Because patient teaching is one of the most important functions of professional nursing, the success of this teaching may be used as a gauge for evaluating comprehensive nursing care. This represents a challenge foe the future. A questionnaire consisting of 67 items was distributed to 200 professional nurses working ill direct patient care at Yonsei University Medical Center in Seoul, Korea. 160 (80,0%) nurses of the total sample returned completed questionnaires 81 (50.6%) nurses were graduates of 3 fear diploma courser 79 (49.4%) nurses were graduates of 4 year collegiate nursing schools in Korea 141 (88,1%) nurses had under 5 years of clinical experience in a medical center, while 19 (11.9%) nurses had more than 5years of clinical experience. Three hypotheses were tested: 1. “Nurses had high levels of concept and knowledge toward patient teaching”-This was demonstrated by the use of a statistical method, the mean average. 2. “Nurses graduating from collegiate programs and diploma school programs of nursing show differences in concepts and knowledge toward patient teaching”-This was demonstrated by a statistical method, the mean average, although the results showed little difference between the two groups. 3. “Nurses having different amounts of clinical experience showed differences in concepts and knowledge toward patient teaching”-This was demonstrated by the use of a statistical method, the mean average. 2. “Nurses graduating from collegiate programs and diploma school programs of nursing show differences in concepts and knowledge toward patient teaching”-This was demonstrated by a statistical method, the mean average, although the results showed little difference between the two groups. 3. “Nurses having different amounts of clinical experience showed differences in concepts and knowledge toward patient teaching”-This was demonstrated by the use of the T-test. Conclusions of this study are as follow: Before attempting the explanation, of the results, the questionnaire will he explained. The questionnaire contained 67 questions divided into 9 sections. These sections were: concept, content, time, prior preparation, method, purpose, condition, evaluation, and recommendations for patient teaching. 1. The nurse's concept of patient teaching: Most of the nurses had high levels of concepts and knowledge toward patient teaching. Though nursing service was task-centered at the turn of the century, the emphasis today is put on patient-centered nursing. But we find some of the nurses (39.4%) still are task-centered. After, patient teaching, only a few of the nurses (14.4%) checked this as “normal teaching.”It seems therefore that patient teaching is often done unconsciously. Accordingly it would he desirable to have correct concepts and knowledge of teaching taught in schools of nursing. 2. Contents of patient teaching: Most nurses (97.5%) had good information about content of patient teaching. They teach their patients during admission about their diseases, tests, treatments, and before discharge give nurses instruction about simple nursing care, personal hygiene, special diets, rest and sleep, elimination etc. 3. Time of patient teaching: Teaching can be accomplished even if there is no time set aside specifically for it. -a large part of the nurse's teaching can be done while she is giving nursing care. If she believes she has to wait for time free from other activities, she may miss many teaching opportunities. But generally proper time for patient teaching is in the midmorning or midafternoon since one and a half or two hours required. Nurses meet their patients in all stages of health: often tile patient is in a condition in which learning is impossible-pain, mental confusion, debilitation, loss of sensory perception, fear and anxiety-any of these conditions may preclude the possibility of successful teaching. 4. Prior preparation for patient teaching: The teaching aids, nurses use are charts (53.1%), periodicals (23.8%), and books (7.0%) Some of the respondents (28.1%) reported that they had had good preparation for the teaching which they were doing, others (27.5%) reported adequate preparation, and others (43.8%) reported that their preparation for teaching was inadequate. If nurses have advance preparation for normal teaching and are aware of their objectives in teaching patients, they can do effective teaching. 5. Method of patient teaching: The methods of individual patient teaching, the nurses in this study used, were conversation (55.6%) and individual discussion (19.2%) . And the methods of group patient teaching they used were demonstration (42.3%) and lecture (26.2%) They should also he prepared to use pamphlet and simple audio-visual aids for their teaching. 6. Purposes of patient teaching: The purposes of patient teaching is to help the patient recover completely, but the majority of the respondents (40.6%) don't know this. So it is necessary for them to understand correctly the purpose of patient teaching and nursing care. 7. Condition of patient teaching: The majority of respondents (75.0%) reported there were some troubles in teaching uncooperative patients. It would seem that the nurse's leaching would be improved if, in her preparation, she was given a better understanding of the patient and communication skills. The majority of respondents in the total group, felt teaching is their responsibility and they should teach their patient's family as well as the patient. The place for teaching is most often at the patient's bedside (95.6%) but the conference room (3.1%) is also used. It is important that privacy be provided in learning situations with involve personal matters. 8. Evaluation of patient teaching: The majority of respondents (76.3%,) felt leaching is a highly systematic and organized function requiring special preparation in a college or university, they have the idea that teaching is a continuous and ever-present activity of all people throughout their lives. The suggestion mentioned the most frequently for improving preparation was a course in patient teaching included in the basic nursing program. 9. Recommendations: 1) It is recommended, that in clinical nursing, patient teaching be emphasized. 2) It is recommended, that insertive education the concepts and purposes of patient teaching he renewed for all nurses. In addition to this new knowledge, methods and materials which can be applied to patient teaching should be given also. 3) It is recommended, in group patient teaching, we try to embark on team teaching.

  • PDF

A Study on the Method of Minimizing the Bit-Rate Overhead of H.264 Video when Encrypting the Region of Interest (관심영역 암호화 시 발생하는 H.264 영상의 비트레이트 오버헤드 최소화 방법 연구)

  • Son, Dongyeol;Kim, Jimin;Ji, Cheongmin;Kim, Kangseok;Kim, Kihyung;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.311-326
    • /
    • 2018
  • This paper has experimented using News sample video with QCIF ($176{\times}144$) resolution in JM v10.2 code of H.264/AVC-MPEG. The region of interest (ROI) to be encrypted occurred the drift by unnecessarily referring to each frame continuously in accordance with the characteristics of the motion prediction and compensation of the H.264 standard. In order to mitigate the drift, the latest related research method of re-inserting encrypted I-picture into a certain period leads to an increase in the amount of additional computation that becomes the factor increasing the bit-rate overhead of the entire video. Therefore, the reference search range of the block and the frame in the ROI to be encrypted is restricted in the motion prediction and compensation for each frame, and the reference search range in the non-ROI not to be encrypted is not restricted to maintain the normal encoding efficiency. In this way, after encoding the video with restricted reference search range, this article proposes a method of RC4 bit-stream encryption for the ROI such as the face to be able to identify in order to protect personal information in the video. Also, it is compared and analyzed the experimental results after implementing the unencrypted original video, the latest related research method, and the proposed method in the condition of the same environment. In contrast to the latest related research method, the bit-rate overhead of the proposed method is 2.35% higher than that of the original video and 14.93% lower than that of the latest related method, while mitigating temporal drift through the proposed method. These improved results have verified by experiments of this study.

Usefulness of Data Mining in Criminal Investigation (데이터 마이닝의 범죄수사 적용 가능성)

  • Kim, Joon-Woo;Sohn, Joong-Kweon;Lee, Sang-Han
    • Journal of forensic and investigative science
    • /
    • v.1 no.2
    • /
    • pp.5-19
    • /
    • 2006
  • Data mining is an information extraction activity to discover hidden facts contained in databases. Using a combination of machine learning, statistical analysis, modeling techniques and database technology, data mining finds patterns and subtle relationships in data and infers rules that allow the prediction of future results. Typical applications include market segmentation, customer profiling, fraud detection, evaluation of retail promotions, and credit risk analysis. Law enforcement agencies deal with mass data to investigate the crime and its amount is increasing due to the development of processing the data by using computer. Now new challenge to discover knowledge in that data is confronted to us. It can be applied in criminal investigation to find offenders by analysis of complex and relational data structures and free texts using their criminal records or statement texts. This study was aimed to evaluate possibile application of data mining and its limitation in practical criminal investigation. Clustering of the criminal cases will be possible in habitual crimes such as fraud and burglary when using data mining to identify the crime pattern. Neural network modelling, one of tools in data mining, can be applied to differentiating suspect's photograph or handwriting with that of convict or criminal profiling. A case study of in practical insurance fraud showed that data mining was useful in organized crimes such as gang, terrorism and money laundering. But the products of data mining in criminal investigation should be cautious for evaluating because data mining just offer a clue instead of conclusion. The legal regulation is needed to control the abuse of law enforcement agencies and to protect personal privacy or human rights.

  • PDF

A study on security independent behavior in social game using expanded health belief model (건강신념모델을 확장한 소셜게임(Social Game) 보안의지행동에 관한 연구)

  • Ahn, Ho-Jeong;Kim, Sung-Jun;Kwon, Do-Soon
    • Management & Information Systems Review
    • /
    • v.35 no.2
    • /
    • pp.99-118
    • /
    • 2016
  • With the development of Internet and popularization of smartphones over recent years, social network services are experiencing rapid growth. On top of this, smartphone gaming market is showing a rapid growth and the use of mobile social games is on the significant rise. The occurrence of game data manipulation targeting these services and personal information leakage is highlighting the importance of social gaming security. This study is intended to propose development plans effective and efficient in social game services by figuring out factors putting effects on security dependent behavior of social game users in Korea and carrying out a practical study on the casual relationship between factors influencing security dependent behavior through recognized behavioral control and attitudes for privacy infringement of these factors. To do this, proposed was a study model in which the HBM(Health Belief Model) allowing the social game user to influence security dependent behavior was expanded and applied as a major variable. To verify the study model of this study practically, a survey was conducted among university students in Seoul-based K University and S University who had experienced using social game services. According to the study findings, firstly, the perceived seriousness turned out to provide positive influence to trust. But, the perceived seriousness turned out not to put positive effects on self-efficacy. Secondly, the perceived probability turned out not to put positive effects on self-efficacy and trust. Thirdly, the perceived gain turned out to put positive effects on self-efficacy and trust. Fourthly, the perceived disorder turned out not to put positive effects on self-efficacy and trust. Fifthly, self-efficacy turned out to put positive effects on trust. But, self-efficacy turned out not to put positive effects on security dependent behavior. Sixthly, trust turned out not to put positive effects on security dependent behavior. This study is intended to make a strategic proposal so that social game users can raise awareness of their level of security perception and security willingness through this.

  • PDF

Analyzing Research Trends in Blockchain Studies in South Korea Using Dynamic Topic Modeling and Network Analysis (다이나믹 토픽모델링 및 네트워크 분석 기법을 통한 블록체인 관련 국내 연구 동향 분석)

  • Kim, Donghun;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.3
    • /
    • pp.23-39
    • /
    • 2021
  • This study aims to explore research trends in Blockchain studies in South Korea using dynamic topic modeling and network analysis. To achieve this goal, we conducted the university & institute collaboration network analysis, the keyword co-occurrence network analysis, and times series topic analysis using dynamic topic modeling. Through the university & institute collaboration network analysis, we found major universities such as Soongsil University, Soonchunhyang University, Korea University, Korea Advanced Institute of Science and Technology (KAIST) and major institutes such as Ministry of National Defense, Korea Railroad Research Institute, Samil PricewaterhouseCoopers, Electronics and Telecommunications Research Institute that led collaborative research. Next, through the analysis of the keyword co-occurrence network, we found major research keywords including virtual assets (Cryptocurrency, Bitcoin, Ethereum, Virtual currency), blockchain technology (Distributed ledger, Distributed ledger technology), finance (Smart contract), and information security (Security, privacy, Personal information). Smart contracts showed the highest scores in all network centrality measures showing its importance in the field. Finally, through the time series topic analysis, we identified five major topics including blockchain technology, blockchain ecosystem, blockchain application 1 (trade, online voting, real estate), blockchain application 2 (food, tourism, distribution, media), and blockchain application 3 (economy, finance). Changes of topics were also investigated by exploring proportions of representative keywords for each topic. The study is the first of its kind to attempt to conduct university & institute collaboration networks analysis and dynamic topic modeling-based times series topic analysis for exploring research trends in Blockchain studies in South Korea. Our results can be used by government agencies, universities, and research institutes to develop effective strategies of promoting university & institutes collaboration and interdisciplinary research in the field.

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

A Study on the Potential Use of ChatGPT in Public Design Policy Decision-Making (공공디자인 정책 결정에 ChatGPT의 활용 가능성에 관한연구)

  • Son, Dong Joo;Yoon, Myeong Han
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.172-189
    • /
    • 2023
  • This study investigated the potential contribution of ChatGPT, a massive language and information model, in the decision-making process of public design policies, focusing on the characteristics inherent to public design. Public design utilizes the principles and approaches of design to address societal issues and aims to improve public services. In order to formulate public design policies and plans, it is essential to base them on extensive data, including the general status of the area, population demographics, infrastructure, resources, safety, existing policies, legal regulations, landscape, spatial conditions, current state of public design, and regional issues. Therefore, public design is a field of design research that encompasses a vast amount of data and language. Considering the rapid advancements in artificial intelligence technology and the significance of public design, this study aims to explore how massive language and information models like ChatGPT can contribute to public design policies. Alongside, we reviewed the concepts and principles of public design, its role in policy development and implementation, and examined the overview and features of ChatGPT, including its application cases and preceding research to determine its utility in the decision-making process of public design policies. The study found that ChatGPT could offer substantial language information during the formulation of public design policies and assist in decision-making. In particular, ChatGPT proved useful in providing various perspectives and swiftly supplying information necessary for policy decisions. Additionally, the trend of utilizing artificial intelligence in government policy development was confirmed through various studies. However, the usage of ChatGPT also unveiled ethical, legal, and personal privacy issues. Notably, ethical dilemmas were raised, along with issues related to bias and fairness. To practically apply ChatGPT in the decision-making process of public design policies, first, it is necessary to enhance the capacities of policy developers and public design experts to a certain extent. Second, it is advisable to create a provisional regulation named 'Ordinance on the Use of AI in Policy' to continuously refine the utilization until legal adjustments are made. Currently, implementing these two strategies is deemed necessary. Consequently, employing massive language and information models like ChatGPT in the public design field, which harbors a vast amount of language, holds substantial value.