• Title/Summary/Keyword: person tracking

Search Result 162, Processing Time 0.027 seconds

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Surveillance System Using Person Tracking in Mobile Platform (모바일 플랫폼 기반의 사람 추적 감시시스템)

  • Lee, Kyoung-Mi;Lee, Youn-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.94-101
    • /
    • 2007
  • In this paper, we propose a surveillance system using multi-person tracking in a WIPI based mobile system, which is the standard wireless internet platform. The proposed system consists of two subsystems: the person tracking system and the mobile information transmission system. The person tracking system tracks persons who invade security and the mobile information transmission system sends the tracking results from the person tracking system to the user's mobile phone. In this paper, the person tracking system tracks persons who appear on many cameras with non-overlapping views in order to achieve a wider view. The mobile information transmission system saves automatically tracked data to the owner's web server and transmits the saved data to the user's WIPI mobile phone. Therefore, whenever the user wishes to view tracked data later, the mobile system can provide the user with the tracking results by either the user selecting particular cameras or the time on the owner's mobile phone. The proposed system is a new surveillance system that transfers tracked data among cameras to the user's mobile phone in order to overcome space limitations in tracking areas and monitoring areas and spatial limitations in monitoring hours.

Person-following of a Mobile Robot using a Complementary Tracker with a Camera-laser Scanner (카메라-레이저스캐너 상호보완 추적기를 이용한 이동 로봇의 사람 추종)

  • Kim, Hyoung-Rae;Cui, Xue-Nan;Lee, Jae-Hong;Lee, Seung-Jun;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.78-86
    • /
    • 2014
  • This paper proposes a method of tracking an object for a person-following mobile robot by combining a monocular camera and a laser scanner, where each sensor can supplement the weaknesses of the other sensor. For human-robot interaction, a mobile robot needs to maintain a distance between a moving person and itself. Maintaining distance consists of two parts: object tracking and person-following. Object tracking consists of particle filtering and online learning using shape features which are extracted from an image. A monocular camera easily fails to track a person due to a narrow field-of-view and influence of illumination changes, and has therefore been used together with a laser scanner. After constructing the geometric relation between the differently oriented sensors, the proposed method demonstrates its robustness in tracking and following a person with a success rate of 94.7% in indoor environments with varying lighting conditions and even when a moving object is located between the robot and the person.

Multiple Person Tracking based on Spatial-temporal Information by Global Graph Clustering

  • Su, Yu-ting;Zhu, Xiao-rong;Nie, Wei-Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2217-2229
    • /
    • 2015
  • Since the variations of illumination, the irregular changes of human shapes, and the partial occlusions, multiple person tracking is a challenging work in computer vision. In this paper, we propose a graph clustering method based on spatio-temporal information of moving objects for multiple person tracking. First, the part-based model is utilized to localize individual foreground regions in each frame. Then, we heuristically leverage the spatio-temporal constraints to generate a set of reliable tracklets. Finally, the graph shift method is applied to handle tracklet association problem and consequently generate the completed trajectory for individual object. The extensive comparison experiments demonstrate the superiority of the proposed method.

Person Tracking by Detection of Mobile Robot using RGB-D Cameras

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • In this paper, we have implemented a low-cost mobile robot supporting the person tracking by detection using RGB-D cameras and ROS(Robot Operating System) framework. The mobile robot was developed based on the Kobuki mobile base equipped with 2's Kinect devices and a high performance controller. One kinect device was used to detect and track the single person among people in the constrained working area by combining point cloud data filtering & clustering, HOG classifier and Kalman Filter-based estimation successively, and the other to perform the SLAM-based navigation supported in ROS framework. In performance evaluation, the person tracking by detection was proved to be robustly executed in real-time, and the navigation function showed the accuracy with the mean distance error being lower than 50mm. The mobile robot implemented has a significance in using the open-source based, general-purpose and low-cost approach.

Multiple Moving Person Tracking Based on the IMPRESARIO Simulator

  • Kim, Hyun-Deok;Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.331-336
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. To achieve this goal, we present a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers has been also presented. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

A Surveillance System Combining Model-based Multiple Person Tracking and Non-overlapping Cameras (모델기반 다중 사람추적과 다수의 비겹침 카메라를 결합한 감시시스템)

  • Lee Youn-Mi;Lee Kyoung-Mi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.4
    • /
    • pp.241-253
    • /
    • 2006
  • In modem societies, a monitoring system is required to automatically detect and track persons from several cameras scattered in a wide area. Combining multiple cameras with non-overlapping views and a tracking technique, we propose a method that tracks automatically the target persons in one camera and transfers the tracking information to other networked cameras through a server. So the proposed method tracks thoroughly the target persons over the cameras. In this paper, we use a person model to detect and distinguish the corresponding person and to transfer the person's tracking information. A movement of the tracked persons is defined on FOV lines of the networked cameras. The tracked person has 6 statuses. The proposed system was experimented in several indoor scenario. We achieved 91.2% in an averaged tracking rate and 96% in an averaged status rate.

Person Tracking with a Mobile Robot using Particle Filters in Complex Environment (복잡한 환경에서 파티클 필터를 이용한 자율이동로봇의 사람추적방법)

  • Kwon, Ho-Sang;Kim, Young-Joong;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2796-2798
    • /
    • 2005
  • This Paper presents a method that a mobile robot can track persons in complex environment using particle filters. The topic of person following using mobile robot is researched in many different areas. The main problems of following a person are real time constraint, motion change of person during the tracking and occlusion with other objects. We present appearance adaptive models in a particle filter to realize robust visual tracking algorithm. Adaptive appearance model can handle occlusion with other people while target is moving.

  • PDF