• Title/Summary/Keyword: perpendicular anisotropy field

Search Result 79, Processing Time 0.02 seconds

Two-band effect in superconducting parameters and their anisotropies of $MgB_2$ single crystals ($MgB_2$ 단결정의 초전도 상수와 그 이방성에 나타난 두 개의 띠의 영향)

  • Kang, Byeong-Won;Kim, Heon-Jung;Lee, Hyun-Sook;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.132-137
    • /
    • 2007
  • We have studied superconducting parameters of $MgB_2$ single crystals from reversible magnetization measurements with the magnetic field both parallel and perpendicular to the c-axis of the crystals. The temperature dependence of the London penetration depth, ${\lambda}_{ab}{^{-2}}(T)$, obtained from the Hao-Clem analysis on reversible magnetization, shows a clear discrepancy from single-band theories. It is also found that the anisotropies of the London penetration depth, ${\gamma}_{\lambda}$, slowly increases with temperature while the anisotropy of the upper critical field, ${\gamma}_H$, decreases with temperature. These behaviors are in sharp contrast with the behavior of superconductors with a single band. The temperature dependence of ${\lambda}_{ab}{^{-2}}$, and the opposite temperature dependences of ${\gamma}_{\lambda}\;and\;{\gamma}_H$ can be well explained with the theory of the two-band superconductivity.

  • PDF

Charge Transport in Uniaxially Aligned Liquid-crystalline Polymer Transistors

  • Lee, Mi-Jeong;Chen, Zhuoying;Sirringhaus, H.;Lee, Jang-Sik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.27.2-27.2
    • /
    • 2011
  • Polymer electronics is the one of the most promising way to realize the flexible electronics and many studies made remarkable progress to achieve the improvement in performance of polymer electronics comparable to current silicon-based technology. PBTTT is conjugated semiconducting polymer with highly ordered, chain-extended crystalline microstructures and shows high field effect mobilities above 0.1 $cm^2/Vs$. We studied PBTTTs FETs phase and explored methods to control channel interface in various device structures. Especially, in PBTTTs' unique nano-ribbon phase, we could obtain high mobilities of up to 0.4 $cm^2/Vs$, which was not reached before. Alignment of PBTTTs film was carried out using zone casting and anisotropy of mobilities in parallel and perpendicular to the polymer chain direction was investigated. Optical anisotropy in aligned nano-ribbon PBTTT FETs was also studied using a polarized optical absorption.

  • PDF

$^{63}Cu$ NQR Study of the Anisotropy in $YBa_{2}Cu_{3}O_{7}$ ($YBa_{2}Cu_{3}O_{7}$의 비등방성에 관한 $^{63}Cu$ 핵사중극공명 연구)

  • B. Chang;Cheol-Eui Lee
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.48-51
    • /
    • 1994
  • We have studied the room temperature anisotropy in the high $T_{c}$ superconductor $YBa_{2}Cu_{3}O_{7}$ by means of the $^{63}Cu$ nuclear quadrupole resonance (NQR). For the magnetically oriented powder samples, NQR signals were obtained only when the RF magnetic field is applied perpendicular to the direction of the crystalline c-axis. Significant differences in the spin-lattice relaxation times ($T_{1}$) and the lineshapes were observed between the unoriented powder sample and the magnetically oriented sample.

  • PDF

The Effect of Cr Dosage on FePt Nanoparticle Formation

  • Won, C.;Keavney, D.J.;Divan, R.;Bader, S.D.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.182-188
    • /
    • 2006
  • The search for high-density recording materials has been one of most active and vigorous field in the field of magnetism. $FePt-L1_{0}$ nanoparticle has emerged as a potential candidate because of its high anisotropy. In this paper, we provide an overview of recent work at Argonne National Laboratory that contributes to the ongoing dialogue concerning the relation between structure and properties of the FePt nanoparticle system. In particular we discuss the ability to control structure and properties via dosing with Cr. Cr-dosed FePt films were grown via molecular beam epitaxy and annealed at $550^{\circ}C$ in an ultrahigh vacuum chamber, and were studied with the surface magneto-optic Kerr effect (SMOKE), scanning electron microscopy (SEM) and x-ray magnetic circular dichroism (XMCD). We found that small dosage of Cr helps to generate $L1_{0}$ phase FePt magnetic nanoparticles with small size, defined shape and regular spatial distribution on MgO (001) substrate. The nanostructures are ferromagnetic with high magnetic coercivity (${\sim}0.9T$) and magnetic easy axis in the desired out-of-plane orientation. We also show that controlling the lateral region where nanostructures exist is possible via artificial patterning with Cr.

Development of a 1.8T HTS Insert Coil for High Field Magnet (고자장 자석용 1.8T HTS insert 코일 개발)

  • Bae, Joon-Han;Seong, Ki-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1035-1038
    • /
    • 2007
  • We designed and manufactured a 1.8T high temperature superconducting(HTS) insert coil for a NMR magnet operated at 4.2 K. Suitable HTS superconductor and HTS coil were carefully designed and developed. We have selected multi-filamentary Bi2223 conductor fabricated by American Superconductor Corporation(AMSC). The selected conductor consists of Bi2223 filaments of 55, silver stabilizer and stainless steel reinforcement tapes. Therefore, it shows good hoop strength as well as compression tolerance. The conductor has a tape cross-section of 0.31mm x 4.8mm. the Bi2223 conductor shows large anisotropy of critical current. The critical current of conductor in magnetic field parallel to the flat surface are much higher than that in magnetic field perpendicular. The HTS coil has an inner diameter of 78 mm, an outer diameter of 127 mm and a coil length of 600 mm. In this paper, the detailed design, fabrication and test results on the HTS insert coil are presented.

TEMPERATURE DEPENDENCE OF SPIN WAVE RESONANCE IN AMORPHOUS FILMS

  • Kim, Y.Y.;Baek, J.S.;Lee, S.J.;Lee, T.G.;Lim, W.Y.;Yu, S.C.;Lee, S.H.;Jang, P.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.524-527
    • /
    • 1995
  • The temperature dependence of spin wave mode separation in amorphous $Co_{89.5}Zr_{10.5}$ thin film has been investigated at temperatures between 100 K and 300 K. The magnetization and the spectroscopic splitting factor were obtained for the main resonance mode in parallel and perpendicular magnetic field. ${\Delta}H_{2-3}$, the difference between resonance field of mode 2 and the resonance field of mode 3, increases with decreasing temperature. The linewidth increases for all the modes with decreasing temperature. Especially in mode 3 it increases rapidly below 200 K. This phenomenon could be caused by the increase of exchange stiffness constant or the decrease of surface magnetic anisotropy constant with decreasing temperature.

  • PDF

KINETIC PROPERTIES OF MAGNETIC DECREASES OBSERVED IN THE SOLAR WIND AT ~1 AU

  • LEE, ENSANG;PARKS, GEORDE K.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • In this study, we investigate the kinetic properties of magnetic decreases observed in the solar wind at ~1 AU using the Cluster observations. We study two different magnetic decreases: one with a short observation duration of ~2.5 minutes and stable structure and the other with a longer observation duration of ~40 minutes and some fluctuations and substructures. Despite the contrast in durations and magnetic structures, the velocity space distributions of ions are similar in both events. The velocity space distribution becomes more anisotropic along the direction parallel to the magnetic field, which differs from observations obtained at high heliographic latitudes. On the other hand, electrons show different features from the ions. The core component of the electrons shows similar anisotropy to the ions, though the anisotropy is much weaker. However, while ions are heated in the magnetic decreases, the core electrons are slightly cooled, especially in the perpendicular direction. The halo component does not change much in the magnetic decreases from the ambient solar wind. The strahl component is observed only in one of the magnetic decreases. The results imply that the ions and electrons in the magnetic decreases can behave differently, which should be considered for the formation mechanism of the magnetic decreases.

The Effect of Thickness and Underlayer on Crystallographic Properties of Co-Cr Thin Films (CoCr 박막의 결정성에 미치는 두께 및 하지층의 영향)

  • Choi, Sung-Min;Kim, Jae-Hwan;Keum, Min-Jong;Kim, Kyung-Hwan;Nakagawa, Nakagawa;Naoe, M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1447-1449
    • /
    • 1998
  • The c-axis orientation plays a very important role in controlling the main parameters of the perpendicular magnetic recording media, such as perepndicular magnetic anisotropy field $H_{K{\bot}}$, the ratio of coercive force $H_{C{\bot}}/H_{C//}$, the recording density $D_{50}$, and the dispersion of the c-axis orientation $\Delta\theta_{50}$, which is quite important for the performance as perpendicular recording media, as well as the magnetic properties of the film. In this study, the essential process requirement for preparing the Co-Cr films with the superior c-axis orientation, the dependence of $\Delta\theta_{50}$ and the magnetic properties on the film thickness $\delta$, and the effect of underlayer on the dispersion of c-axis orientation have been investigated for both the FTS and DCM system.

  • PDF

Sputering Pressure and Temperature Effects on Magnetization Reversal Behaviors of $Co(2\AA)/Pd(13\AA)$ Multilayers (스퍼터링압력 및 온도 효과에 의한 $Co(2\AA)/Pd(13\AA)$ 다층박막의 자화반전 거동)

  • 김성봉;정순영
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.199-203
    • /
    • 1996
  • To study the magnetization reversal behavior of Co/Pd multilayers, we first demagnetized the samples by the field-demagnetized method and then measured initial curves and minor loops. The coercivity and the perpendicular magnetic anisotropy were obtained from the perpendicular and parallel magnetization curves measured at different temperatures. We interpret our experimental results by applying several qualitative and semiquantative approaches. From these study, we found that the magnetization reversal behavior is dominated by the domain wall pinning for all samples and the coercivity incremental tendency can be explained by Kronmuller's formula $H_c(T)\;{\propto}\;r_0.K_u$.

  • PDF

The Effect of Magnetic Field on Enhancing the Anisotropy of Melt-spun Nd-Fe-Co(-Zr)-B Alloy (급속응고중 외부자장에 의한 Nd-Fe-Co(-Zr)-B계 합금의 자기이방성 향상)

  • Lee, U-Yeong;Choe, Seung-Deok;Yang, Chung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.233-238
    • /
    • 1992
  • Melt-spun $Nd_{14}Fe_{76}Co_4B_6$ and $Nd_{10.5}Fe_{79}Co_2Zr_{1.5}B_7$ ribbons were prepared under an externally applied magnetic field. Magnetic properties in terms of anisotropy were evaluated by discussing the effect of textured structure of the ribbon samples as well as its powders. About 32 % increase in $(B{\cdot}H)_{max}$ and 18.8 % increase in $B_r$ were observed along the perpendicular direction of the ribbon plane which is more prominent for the Nd-Fe-Co-Zr-B than for the Nd-Fe-Co-B alloy. The enhancement of magnetic anisotropy was monitored by measuring the anisotropy constant of each alloy as a function of quenching rate of the ribbon. It was found that for the melt-spun ribbon quenched at slow rate(less than 7 m/s) the magnetic field effect was overwhelmed by the heat gradient effect through the ribbon thickness while the field effect was prominent at intermediate quenching rate (more than 7~11 m/s). The reproducible maximum energy product, $(B{\cdot}H)_{max}$=16.4 MGOe can be obtained from the Nd-Fe-Co-Zr-B alloy.

  • PDF