• Title/Summary/Keyword: perpendicular adhesion

Search Result 9, Processing Time 0.021 seconds

A Proposal of a New Model of Wheel and Tractor Dynamics that Includes Lift Resistance

  • Sakai, Jun;Choe, Jung-Seob;Kishimoto, Tadashi;Yoon, Yeo-Doo
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1176-1185
    • /
    • 1993
  • The purpose of this study is to propose a new dynamic model of wheels and agricultural tractors through verification of the existence of " lift resistance " and "perpendicular adhesion" which also can be called " contra-retractive adhesion". The existence of these forces was proved through experiments including the development of a sensor which can measure the forces acting on a wheel accurately. Consequently " perpendicular adhesion ratio" which is defined as the ratio of the perpendicular adhesion to the distributed load was observed to be in the range of 0.05 to 0.3. This means the influence of the " lift resistance " is comparable to that of motion resistance in wheel dynamics. The perpendicular adhesion ratio was observed to decrease logarithmically with the increase of ground contact pressure, and to increase linearly with increase of the travel speed of the wheel . Some examples to express the new dynamic model compared to the conventional dynamics are explained.

  • PDF

Estimation of Interfacial Adhesion through the Micromechanical Analysis of Failure Mechanisms in DLC Film

  • Jeong, Jeung-Hyun;Park, Hae-Seok;Ahn, Jeong-Hoon;Dongil Kwon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • In this paper, it is intended to present more reproducible and quantitative method for adhesion assemssement. In scratch test, micromechanical analysis on the stress state beneath the indenter was carried out considering the additional blister field. The interface adhesion was quantified as work of adhesion through Griffith energy approach on the basis of the analyzed stress state. The work of adhesion for DLC film/WC-Co substrate calculated through the proposed analysis shows the identical value regardless of distinctly different critical loads measured with the change of film thickness and scratching speed. On the other hand, uniaxial loading was imposed on DCL film/Al substrate, developing the transverse film cracks perpendicular to loading direction. Since this film cracking behavior depends on the relative magnitude of adhesion strength to film fracture strength, the quantification of adhesion strength was given a trial through the micromechanical analysis of adhesion-dependence of film cracking patterns. The interface shear strength can be quantified from the measurement of strain $\varepsilon$s and crack spacing $\lambda$ at the cessation of film cracking.

  • PDF

Separation of Human Breast Cancer and Epithelial Cells by Adhesion Difference in a Microfluidic Channel

  • Kwon, Keon-Woo;Choi, Sung-Sik;Kim, Byung-Kyu;Lee, Se-Na;Lee, Sang-Ho;Park, Min-Cheol;Kim, Pil-Nam;Park, Suk-Ho;Kim, Young-Ho;Park, Jun-Gyul;Suh, Kahp-Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.140-150
    • /
    • 2007
  • A simple, label-free microfluidic cell purification method is presented for separation of cancer cells by exploiting difference in cell adhesion. To maximize the adhesion difference, three types of polymeric nanostructures (50nm pillars, 50nm perpendicular and 50nm parallel lines with respect to the direction of flow) were fabricated using UV-assisted capillary moulding and included inside a polydimethylsiloxane (PDMS) microfluidic channel bonded onto glass substrate. The adhesion force of human breast epithelial cells (MCF10A) and human breast carcinoma (MCF7) was measured independently by injecting each cell line into the microfluidic device followed by culture for a period of time (e.g., one, two, and three hours). Then, the cells bound to the floor of a microfluidic channel were detached by increasing the flow rate of medium in a stepwise fashion. It was found that the adhesion force of MCF10A was always higher than that of MCF cells regardless of culture time and surface nanotopography at all flow rates, resulting in a label-free detection and separation of cancer cells. For the cell types used in our study, the optimum separation was found for 2 hours culture on 50nm parallel line pattern followed by flow-induced detachment at a flow rate of $300{\mu}l/min$.

Tractor Design for Rotary Tillage Considering Lift Resistance (상승저항력을 고려한 로터리경운작업을 위한 승용트랙터의 설계)

  • Sakai, J.;Yoon, Y.D.;Choe, J.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-350
    • /
    • 1993
  • The purpose of this study is to develop design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage. The main results of this study are as follows. 1. A wheel-lug ought to receive a special resistance in downward direction which resists the lug's upward motion on wet sticky soil surface. The authors introduce a new academic name of the "lift resistance(上昇抵抗力, 상승저항력)" for such a force which resists retraction of a wheel lug from the soil in the upward trochoidal motion. This force is composed of the frictional force acting on the trailing and the leading lug side, and the "perpendicular adhesion(鉛直付着力, 연직부착력)" acting on the lug face and the undertread face on adhesive soil. 2. The "lift resistance ratio(上昇抵抗力係數, 상승저항력계수)" and the "perpendicular adhesion ratio(鉛直付着力係數, 연직부착력계수)" were defined, which are something similar to the definition of the motion resistance ratio, the traction coefficient, etc. 3. The design equation of the optimum weight of a rotary tiller mounted on the tractor derived by calaulating the forces acting on the rotary blades. 4. The design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage were derived. It becomes clear that the optimum weight of a rotary tiller and a tractor can be estimated in planning design by means of putting about 21 design factors of the target into the equation. These equations are useful for planning design to estimate the optimum dimensions and specifications of a rotary tiller as well as a tractor by the use of known and/or unknown design parameters.

  • PDF

Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Luo, Binyu;Wang, Jie;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.571-582
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the uniaxial compression tests and numerical studies were carried out. The interaction forms and formation mechanisms at the contact interfaces of different materials were analyzed to reveal the effect of interaction on the mechanical behavior of composite samples. The research demonstrated that there are three types of interactions between the two materials at the contact interface: constraint parallel to the interface, squeezing perpendicular to the interface, and shear stress on the interface. The interaction is mainly affected by the differences in Poisson's ratio and elastic modulus of the two materials, stronger interface adhesion, and larger interface inclination. The interaction weakens the strength and stiffness of the composite sample, and the magnitude of weakening is positively correlated with the degree of difference in the mechanical properties of the materials. The tensile-shear stress derived from the interaction results in the axial tensile fracture perpendicular to the interface and the interfacial shear facture. Tensile cracks in stronger material will propagation into the weaker material through the bonded interface. The larger inclination angle of the interface enhances the effect of composite tensile/shear failure on the overall sample.

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

Stability and Adhesion of Diamond-like Carbon Film under Micro-tensile Test Condition (미소 인장시험을 통한 다이아몬드상 카본 박막의 안정성 및 접합력 평가)

  • Choi Heon Woong;Lee Kwang-Ryeol;Wang Rizhi;Oh Kyu Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.175-181
    • /
    • 2004
  • We investigated the stability of the DLC film coated on 304 stainless steel substrate by Radio frequency assisted chemical vapor deposition method. Fracture and spallation behaviour of the coating was observed during micro-tensile test of the fil $m_strate composite. As the tensile deformation progressed, the cracks of the film were observed in the perpendicular direction to the tensile axis. Further deformation resulted in the plastic deformation with $45^{\circ}$ slip bands on the substrate surface. Spallation of the film occurred with the plastic deformation, which was initiated at the cracks of the film and was aligned along the slip directions. We found that both the cracking and the spallation behaviors are strongly dependent on the pre-treatment condition, such as Ar plasma pre-treatment. The spallation of the film was considerably suppressed in an optimized condition of the substrate cleaning by Ar glow discharge. We observed the improved stability with increasing duration of Ar plasma pre-treatment.nt.

Effects of Adhesion Conditions on Bonding Strength of Pitch Pine Woods for Glued-Laminated Wood (리기다소나무 판재(板材)의 접착조건(接着條件)이 집성재(集成材)의 접착성능(接着性能)에 미치는 영향(影響))

  • Park, Sang-Bum;Kong, Young-To;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.48-53
    • /
    • 1988
  • This study was carried out to investigate the effects of pressing time and spreading amount, moisture content, gap-distance with butt to butt joint and adhesives on bonding strength in manufacturing the laminated wood with Pitch pine (Pinus rigida). The results obtained were as follows: 1) The pressing time of 12 hours, 10 kilogram per square centimeter of pressure and 200 gram per square meter of spreading amount were required to reach over 50 kilogram per square centimeter (block shear strength) in manufacturing the laminated wood by aqueous vinyl urethane adhesive. 2) The bonding strength decreased with the increase of moisture content of wood. The block shear strength, however, showed over 100 kilogram per square centimeter when the strength test was carried out after air-drying the laminated wood in high moisture content (30-70%). 3) Regardless of direction of load, every flexural property decreased with the increase of gap-distance with butt to butt joint. However, little of every flexural property was changed at 0.5 millimeter of joint-gap distance. The flexural property of vertically laminated wood (perpendicular to glue line to load direction: 1) showed more than that of horizontally laminated wood (parallel to glue line to load direction: //). 4) Among five adhesives used at this experiment, the bonding strength of aqueous vinyl urethane adhesive was the highest in dry bond and wet tests.

  • PDF

Micro-tensile Bond Strength of Composite Resin Bonded to Er:YAG Laser-prepared Dentin (Er:YAG 레이저로 삭제된 상아질에 대한 컴포지트 레진의 미세인장결합강도에 관한 연구)

  • Min, Suk-Jin;Ahn, Yong-Woo;Ko, Myung-Yun;Park, June-Sang
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.211-221
    • /
    • 2006
  • Purpose The aims of this study were to evaluate micro-tensile bond strength of composite resin bonded to dentin following high-speed rotary handpiece preparation or Er:YAG laser preparation with two different adhesive systems and to assess the influence of different Er:YAG laser energies on the micro-tensile bond strength. Materials and Methods In this study, 40 third morlars were used. Flat dentin specimans were obtained and randomly assigned to eight groups. Dentin surfaces were prepared with one of four cutting types: carbide bur, Er:YAG laser (2 W, 3 W and 4 W) and conditioned with two bonding systems, Scotchbond Multipurpose Plus (SM), Clearfil SE bond (SE) and composite resin-build ups were created. After storage for 24 hours, each specimen was serially sectioned perpendicular to the bonded surface to produce more than thirty slabs in each group. Micro-tensile bond strength test was performed at a crosshead speed of 1.0 mm/min. Micro-tensile bond strengths (${\mu}TBS$) were expressed as means$\pm$SD. Data were submitted to statistical analysis using two-way ANOVA, one-way ANOVA, Student-Newman-Keuls' multiple comparison test and t-test. Results and Conclusion 1. Regardless of bonding systems, the ${\mu}TBS$ according to cutting types were from highest to lowest : 3 W, 2 W, Bur, and 4 W. In addition, there was no significant difference between Bur and 4 W (p<0.001). 2. Regardless of cutting types, SM showed significantly higher ${\mu}TBS$ than SE (p<0.001). 3. Bonding to dentin conditioned with SM resulted in higher ${\mu}TBS$ for 3 W compared to Bur, 2 W, and 4 W. There was no significant difference between 2 W and Bur (p<0.001). 4. Bonding to dentin conditioned with SE resulted in higher ${\mu}TBS$ for 3 W compared to 2 W, 4 W, and Bur. Bur exhibited significant lower ${\mu}TBS$ than all other cutting types. There were no significant differences between 3 W, 2 W and between 4 W and Bur (p<0.001). 5. The ${\mu}TBS$ of laser cutting groups were shown in order from highest to lowest: 3 W, 2 W and 4 W in two bonding systems. There was no significant difference between 2 W and 3 W in SE (p<0.001). : The ${\mu}TBS$ of composite resin bonded dentin was significantly affected by interaction between the cutting type and bonding system. In the range of 2 W-3 W, cavity preparation of the Er:YAG laser seems to supply good adhesion of composite resin restoration no less than bur preparation. In particular, if you want to use the self-etching system, including Clearfil SE bond for the purpose of a simplification of the bonding procedures and prevention of adverse effects by excessive etching, an Er:YAG laser may offer better adhesion than a bur.