• 제목/요약/키워드: peroxisomal protein

검색결과 19건 처리시간 0.021초

Pexophagy: Molecular Mechanisms and Implications for Health and Diseases

  • Cho, Dong-Hyung;Kim, Yi Sak;Jo, Doo Sin;Choe, Seong-Kyu;Jo, Eun-Kyeong
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.55-64
    • /
    • 2018
  • Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.

무 유식물의 생장과 Peroxisome 효소 활성에 미치는 트리아콘타놀의 효과 (Effects of Triacontanol on Growth and Peroxisomal Enzyme Activities in Radish (Raphanus sativus L.) Seedlings)

  • 진창덕
    • Journal of Plant Biology
    • /
    • 제27권4호
    • /
    • pp.241-251
    • /
    • 1984
  • The present study investigated the effects of triacontanol (TRIA) on plant growth and peroxisomal enzyme activities in radish seedlings. The optimum concentration of TRIA with respect to radish seedling bioassay was decided to 1.0mg $1^{-1}$. In comparison to untreated controls (including Tween 20 treatment), 1.0mg $1^{-1}$ TRIA treatment caused an increase in seed germination rate and root growth, but no stimulation in hypocotyl growth. Chlorophyll accumulation in cotyledon during carly development stage increased rapidly, and degradation of chlorophyll in later stage due to the cotyledon senesence was noticeably retarded. Increase of soluble protein content in cotyledon at early period of development was observed. Isocitrate lyase and catalase activity was not significantly different in both the treated and the untreated plants. But, glycolate oxidase activity was inhibited by TRIA down to 20% against controls. Also, the increase of the activity of peroxidase, a leaf-senescence marker enzyme, was continuously retarded over control for 8 days of development. Based on above results, TRIA was found to be active in both the growth and the peroxisomal enzyme activities of radish seedlings.

  • PDF

Antifungal activity of Saccharomyces cerevisiae peroxisomal 3-ketoacyl-CoA thiolase

  • Lee, Jung-Ro;Kim, Sun-Young;Chae, Ho-Byoung;Jung, Ji-Hyun;Lee, Sang-Yeol
    • BMB Reports
    • /
    • 제42권5호
    • /
    • pp.281-285
    • /
    • 2009
  • Peroxisomes play an important role in cellular defense systems and generate secondary messengers for cellular communication. Saccharomyces cerevisiae containing oleate-induced peroxisomes were subjected to buffer-soluble extraction and two chromatographic procedures, and a protein with antifungal activity was isolated. The results of MALDI-TOF analysis identified the isolated protein as peroxisomal 3-ketoacyl-CoA thiolase (ScFox3). Purified yeast ScFox3 exhibited thiolase activity that catalyzed the thiolytic cleavage of 3-ketoacyl-CoA to acetyl-CoA and acyl-CoA. ScFox3 protein inhibited various pathogenic fungal strains, with the exception of Aspergillus flavus. Using ScFox3-GFP and PTS2 signal-truncated ScFox3M-GFP, we showed that only ScFox3-GFP, with an intact PTS2 peroxisome signal sequence, was able to translocate into peroxisomes. Yeast ScFox3 is a natural antifungal agent found in peroxisomes.

새로운 ABCD1 유전자의 돌연변이를 가지는 소아 대뇌형 부신백질이영양증 1례 (A Case of Childhood Cerebral Form Adrenoleukodystrophy with Novel Mutation in the ABCD1 Gene)

  • 신영림
    • 대한유전성대사질환학회지
    • /
    • 제12권1호
    • /
    • pp.49-53
    • /
    • 2012
  • X 연관 부신백질이영양증(adrenoleukodystrophy, ALD)은 과산화소체베타산화과정(peroxisomal ${\beta}$-oxidation)의 장애로 매우긴사슬지방산(very long chain fatty acids, VLCFA)이 신경계의 백질과 부신피질 및 고환에 축척된다. 이 질환은 과산화소체막단백질(peroxisomal membrane protein)을 형성하는 Xq28에 위치하는 ATP-binding cassette, subfamily D, member 1 (ABCD1) 유전자 돌연변이에 의해 주로 발생한다. X 연관 ALD는 다양한 임상양상을 보이는데 전형적인 소아대뇌형 부신백질이영양증은 10세 이전의 남아에서 대뇌백질에 빠르게 진행하는 탈수초현상을 보인다. 8세 된 남자 환아로 정상발달과정을 보이던 중 초등학교 입학 후에 집중장애와 산만한 모습으로 인해 주의력결핍과다활동장애로 진단받고 치료를 받았었다. 환아는 내원 8개월 전부터 말이 어눌해 지고 걸을 때 오른 발을 끌며 자주 넘어지는 모습을 보여 내원하였고 오른쪽 상, 하지의 근력이 떨어지는 양상이 관찰되었다. 검사상 부신기능저하증 소견을 보였으며 혈청 지방산 분석검사에서는 C26:0, C42:0/C22:0, C26:0/C22:0가 증가하였다. 뇌 자기공명영상에서는 T2와 FLAIR 강조영상에서 양측의 두정후두부의 백질과 소뇌의 백질에서 대칭적으로 고신호강도를 보였다. 환아는 부신백질이영양증로 진단하였고 ABCD1 유전자 분석 검사에서 새로운 c.983delT (p.Met329CysfsX7) 돌연변이가 확인되었다. X 연관 ALD는 유전자형과 표현형에 연관성이 없으며 다양한 임상양상을 보이기 때문에 환자들마다 임상증상을 잘 관찰해야 하며 향후 유전자 기능을 좀 더 파악하고 임상증상에 영향을 주는 다른 요소에 대한 연구가 필요할 것이라 사료된다.

  • PDF

Transdifferentiation of bovine epithelial cells towards adipocytes in the presence of myoepithelium

  • Sugathan, Subi;Lee, Sung-Jin;Shiwani, Supriya;Singh, Naresh Kumar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.349-359
    • /
    • 2020
  • Objective: Orchastric changes in the mammary glands are vital, especially during lactation. The secretary epithelial cells together with the supporting myoepithelial and stromal cells function cordially to secrete milk. Increase in the number of luminal epithelial cells and a decrease in adipocytes are visible during lactation, whereas the reverse happens in the involution. However, an early involution occurs if the epithelial cells transdifferentiate towards adipocytes during the lactation period. We aimed to inhibit the adipocyte transdifferentiation of luminal cells by restraining the peroxisomal proliferator-activated receptor γ (PPARγ) pathway. Methods: Linolenic acid (LA) and thiazolidinediones (TZDs) induced adipogenesis in mammary epithelial cells were conducted in monolayer, mixed culture as well as in transwell plate co-culture with mammary myoepithelial cells. Results: Co-culture with myoepithelial cells showed higher adipogenic gene expression in epithelial cells under LA+TZDs treatment. Increase in the expressions of PPARγ, CCAAT/enhancer-binding protein α and vimentin in both mRNA as well as protein levels were observed. Whereas, bisphenol A diglycidyl ether treatment blocked LA+TZDs induced adipogenesis, as it could not show a significant rise in adipose related markers. Although comparative results were found in both mixed culture and monolayer conditions, co-culture technic was found to work better than the others. Conclusion: Antagonizing PPARγ pathway in the presence of myoepithelial cells can significantly reduce the adipogenisis in epithelial cells, suggesting therapeutic inhibition of PPARγ can be considered to counter early involution or excessive adipogenesis in mammary epithelium in animals.

ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells

  • Zheng, Fei-Meng;Chen, Wang-Bing;Qin, Tao;Lv, Li-Na;Feng, Bi;Lu, Yan-Ling;Li, Zuo-Quan;Wang, Xiao-Chao;Tao, Li-Ju;Li, Hong-Wen;Li, Shu-You
    • BMB Reports
    • /
    • 제52권9호
    • /
    • pp.566-571
    • /
    • 2019
  • Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ${\beta}$-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma.

Co-Expression of Protein Tyrosine Kinases EGFR-2 and $PDGFR{\beta}$ with Protein Tyrosine Phosphatase 1B in Pichia pastoris

  • Pham, Ngoc Tu;Wang, Yamin;Cai, Menghao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.152-159
    • /
    • 2014
  • The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Co-expression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and $PDGFR{\beta}$ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and $PDGFR{\beta}$ fusion proteins were purified by $Ni^{2+}$ affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and $PDGFR{\beta}$ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics.

Molecular Characterization, Chromosomal Localizations, Expression Profile, and Association Analysis of the Porcine PECI Gene with Carcass Traits

  • Gao, H.;Fan, B.;Zhu, M.J.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권1호
    • /
    • pp.7-12
    • /
    • 2010
  • The full-length cDNA of the porcine peroxisomal ${\Delta}^3$,${\Delta}^2$-enoyl-CoA isomerase (PECI) gene encodes a monofunctional peroxisomal ${\Delta}^3$,${\Delta}^2$-enoyl-CoA isomerase. Cloning and sequencing of the porcine PECI cDNA revealed the presence of an 1185-base pair open reading frame predicted to encode a 394-amino acid protein by the 5'rapid amplification of cDNA ends (5'RACE) and EST sequences. The porcine PECI gene was expressed in seven tissues (heart, liver, spleen, lung, kidney, skeletal muscle, fat) which was revealed by reverse transcriptase-polymerase chain reaction (RT-PCR). The porcine PECI was mapped to SSC71/2 p11-13 using the somatic cell hybrid panel (SCHP) and the radiation hybrid panel (RH) (LOD score 12.84). The data showed that PECI was closely linked to marker S0383. A C/T single nucleotide polymorphism in PECI exon 10 (3'UTR) was detected as a PvuII PCR-RFLP. Association analysis in our experimental pig population showed that different genotypes of PECI gene were significantly associated with the Average Backfat thickness (ABF) (p<0.05) and Buttock backfat thickness (p<0.01).

A Cytosolic Thioredoxin Acts as a Molecular Chaperone for Peroxisome Matrix Proteins as Well as Antioxidant in Peroxisome

  • Du, Hui;Kim, Sunghan;Hur, Yoon-Sun;Lee, Myung-Sok;Lee, Suk-Ha;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.187-194
    • /
    • 2015
  • Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.