• Title/Summary/Keyword: peroxide reductase

Search Result 100, Processing Time 0.024 seconds

Effects of $\Upsilon$-Irradiated Pork Feeding on Preneoplastic Hepatic Lesion, Cytochrome P450 System and Microsome Glucose 6-Phosphatase Activity in Rat Hepatocarcinogenesis (실험적 간 발암모델에서 감마선 조사 돼지고기 섭취가 전암성병변의 생성, 약물대사 효소계 및 소포체 막 안정성에 미치는 영향)

  • 김미정;김정희
    • Journal of Nutrition and Health
    • /
    • v.35 no.6
    • /
    • pp.643-649
    • /
    • 2002
  • This study was done to investigate effects of ${\gamma}$-irradiated pork feeding on the formation of glutathione S-transferase placental form positive (GST-P$^{+}$) foci, lipid peroxidation, cytochrome P450 system and microsomal glucose 6-phosphatase activity in diethylnitrosamine (DEN)-initiated rat hepatocarcinogenesis. Weaning Sprague-Dawley male rats were fed the diet containing ${\gamma}$-irradiated ground pork at the dose of 0, 3, 10, 30 kGy as a 20% of protein source for 8 weeks. One week after feeding, rats were intraperitoneally injected twice with a dose of DEN (50 mg/kg BW). As a promote.,0.05%phenobarbital was fed in drinking water from one week after DEN treatment until the end of experiment. At the end of 8th week, rats were sacrificed and hepatic GST-P$^{+}$ foci, microsomal malondialdehyde (MDA) and conjugated diene contents were determined. In addition, cytochrome P450 content and the activities of NADPH cytochrome P450 reductase and glucose 6-phosphatase were also measured. There was no significant effect by gamma irradiation on microsomal MDA content, conjugated diene, cytochrome P450 content and activities of NADPH cytochrome P450 reductase and glucose 6-phosphatase. However with DEN treatment, microsomal MDA content showed a increasing tendency. Cytochrome P450 content was also significantly increased while microsomal glucose 6-phophatase activity was significantly decreased with DEN treatment. However the activity of NADPH cytochrome P450 reductase was not affected. An interesting finding in this study was that the number and area of hepatic GST-P$^{+}$ foci of rats fed gamma irradiated pork were tended to be decreased by high dose of irradiation, but were not significantly different. These results might imply that the consumption of low dose of gamma irradiated pork does not affect the formation of hepatic GST-P$^{+}$ foci and lipid peroxide and membrane stability.ability.

Effects of $\gamma$-Irradiated Beef Feeding on Preneoplastic Hepatic Lesion, Cytochrome P450 System and Microsome Glucose 6-Phosphatase Activity in Rat Hepatocarcinogenesis (실험적 간 발암모델에서 감마선 조사 쇠고기 섭취가 전암성병변의 생성, 약물대사 효소계 및 소포체 막 안정성에 미치는 영향)

  • 김정희;김미정;강일준;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.638-645
    • /
    • 1999
  • This study was done to investigate effects of ${\gamma}$ irradiated beef feeding on the formation of gluta thione S transferase placental form positive(GST P+) foci, lipid peroxidation, cytochrome P450 system and microsomal glucose 6 phosphate activity in diethylnitrosamine(DEN) initiated rat hepatocarci nogenesis. Weaning Sprague Dawley male rats were fed the diet containing ${\gamma}$ irradiatied ground beef at the dose of 0, 3, 5kGy as a 20% of protein source for 8 weeks. One week after feeding, rats were intraperitoneally injected twice with a dose of DEN(50mg/kg BW). As a promoter, 0.05% phenobarbital was fed in drinking water from one week after DEN treatment until the end of experiment. At the end of 8th week, rats were sacrificed and hepatic GST P+ foci, microsomal malondialdehyde(MDA) and conjugated diene contents were determined. In addition, cytochrome P450 content and the activities of NADPH cytochrome P450 reductase and glucose 6 phosphatase were also measured. There was no significant effect by gamma irradiation on microsomal MDA content, conjugated diene, cytochrome P450 content and activities of NADPH cytochrome P450 reductase and glucose 6 phosphatase. However with DEN treatment, microsomal MDA content and conjugated diene contents were significantly changed. Cytochrome P450 content was also significantly increased while microsomal glucose 6 phophatase activity was significantly decreased with DEN treatment. However activity of NADPH cytochrome P450 reductase was not affected. An interesting finding in this study was that the number and area of hepatic GST P+ foci of the rats fed gamma irradiated beef were significantly(p<0.05) lower than those of the control. Such a lowering effect on GST P+ foci formation was highest at the dose of 3kGy than others. Overall results suggest that the consumption of low dose of gamma irradiated beef does not affect the formation of lipid peroxide, cytochrome P450 system and membrane stability.

  • PDF

Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress

  • Xia, Yang;Yu, Haijun;Zhou, Zhemin;Takaya, Naoki;Zhou, Shengmin;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.145-156
    • /
    • 2018
  • Most eukaryotic peroxiredoxins (Prxs) are readily inactivated by a high concentration of hydrogen peroxide ($H_2O_2$) during catalysis owing to their "GGLG" and "YF" motifs. However, such oxidative stress sensitive motifs were not found in the previously identified filamentous fungal Prxs. Additionally, the information on filamentous fungal Prxs is limited and fragmentary. Herein, we cloned and gained insight into Aspergillus nidulans Prx (An.PrxA) in the aspects of protein properties, catalysis characteristics, and especially $H_2O_2$ tolerability. Our results indicated that An.PrxA belongs to the newly defined family of typical 2-Cys Prxs with a marked characteristic that the "resolving" cysteine ($C_R$) is invertedly located preceding the "peroxidatic" cysteine ($C_P$) in amino acid sequences. The inverted arrangement of $C_R$ and $C_P$ can only be found among some yeast, bacterial, and filamentous fungal deduced Prxs. The most surprising characteristic of An.PrxA is its extraordinary ability to resist inactivation by extremely high concentrations of $H_2O_2$, even that approaching 600 mM. By screening the $H_2O_2$-inactivation effects on the components of Prx systems, including Trx, Trx reductase (TrxR), and Prx, we ultimately determined that it is the robust filamentous fungal TrxR rather than Trx and Prx that is responsible for the extreme $H_2O_2$ tolerence of the An.PrxA system. This is the first investigation on the effect of the electron donor partner in the $H_2O_2$ tolerability of the Prx system.

Effects of Polyacetylene Compounds from Panax Ginseng C.A. Meyer on $CCl_4$-Induced Lipid Peroxidation in Mouse Liver

  • Kim, Hye-Young;Lee, You-Hui;Kim, Shin-Il
    • Toxicological Research
    • /
    • v.4 no.1
    • /
    • pp.13-22
    • /
    • 1988
  • The inhibitory effect of three polyacetylene compounds, panaxydol, panaxynol and panaxytriol isolated from Panax ginseng C.A. Meyer on $CCl_4$induced lipid peroxidation in vivo and in vitro hepatic microsomal lipid peroxidation induced by ADP-$Fe^{3+}$, NADPH and NADPH-cytochrome P-450 reductase were investigated. Their effects on lowering the lipid peroxide levels both in serum and liver and lowering the serum enzyme (GOT, GPT, LDH) activities without the $CCl_4$-induction were also determined. Male ICR mice were pretreated i.p. with polyacetylene compounds or DL-${\alpha}$-tocopherol before administration of $CCl_4$ i.p. and 20 hr after the administration of $CCl_4,$ serum and liver were analyzed. Hepatic microsome was isolated and used for the in vitro NADPH-dependent lipid peroxidation system. Except for panaxynol, treatment with polyacetylenes to control mice did not reduce the levels of lipid peroxides and serum enzyme activities. Panaxynol itself inhibited lipid peroxidation in the liver of normal mice. Polyacetylene compounds protected from the $CCl_4$-induced hepatic lipid peroxidation and lowered serum lipid peroxide levels. Polyacetylenes also inhibited the in virto hepatic microsomal lipid peroxidation in a dose-dependent manner. The results suggest that panaxydol, panaxynol and panaxytriol seem to be the antioxidant components which contribute the anti-aging activities of Panax ginseng C.A. Meyer.

  • PDF

The Antioxidant Effects of ONDAMTANG on the Brain Tissue of Mouse (온담탕(溫膽湯)이 뇌조직(腦組織)의 산화작용(酸化作用)에 미치는 영향(影響))

  • Jung In-Chul;Lee Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.8 no.2
    • /
    • pp.51-62
    • /
    • 1997
  • This experiment was done to investigate the antioxidant effect of Ondamtang(ODT) on brain tissues of rats. The experimental groups were divided into three groups and treated as follows for a fifteen days ; Negative control group(NC), Vitamin E admistrated group(PC), ODT administrated Group(ODT). After the extracting microsome from brain of rats, those were measured the amounts of Malondiadehyde and Hydrogen peroxide, then activities of antioxidant enzymes like Superoxide dismutase, Catalase and NADPH-cytochrome P-450 reductadse. The results were as follows; 1. In TBA reaction to measure the amount of MDA, oxidant material of brain tissue of rats, the group treated by ODT showed significant decrease. 2. In the formation of Hydrogen peroxide, the group treated by ODT showed no change in comparison with normal group. 3. The activity of SOD in the group treated by ODT showed a little increase in comparison with normal group. 4. The activity of Catalase was increased significantly in the group treated by ODT than normal group. 5. The activity of NADPH-cytochrome P-450 reductase in the group treated by ODT showed a little increase in comparison with normal group. According to the above results, it is suggested that Ondamtang(ODT) has some antioxidant effects on tissues of brain.

  • PDF

Effect of Salvia plebeia Water Extract on Antioxidant Activity and Lipid Composition of Rats Fed a High Fat-High Cholesterol Diet (배암차즈기 열수 추출물 첨가가 고지방-고콜레스테롤 식이를 급여한 흰쥐의 항산화 활성과 지질조성에 미치는 영향)

  • Won, Hyang Rye
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.233-243
    • /
    • 2016
  • This study examined the antioxidant activity and lipid composition of rats fed a high fat-high cholesterol diet containing Salvia plebeia water extract. Three levels (50 mg/kg, 200 mg/kg, 500 mg/kg) of Salvia plebeia water extract were administered to seven weeks old male Sprague Dawley rats for four weeks. The activity of glutathione peroxidase in serum was high in all groups that received the Salvia plebeia water extract (p<0.05). The glutathione reductase activity was high (p<0.05) in groups that received 50 mg/kg and 500 mg/kg of Salvia plebeia water extract. When rats received Salvia plebeia water extract, the content of MDA (malondialdehyde) in the serum and liver was low in all groups. In addition, the serum total lipid, triglyceride, total cholesterol and LDL-cholesterol contents decreased significantly (p<0.05). Total cholesterol and triglyceride levels in the liver were significantly lower in the group that received the Salvia plebeia water extract than in the control group (p<0.05). Salvia plebeia water extract improves lipid metabolism and it almost meets with the increase of antioxidant activity and peroxide formation reduction. Based on these results, supplemented of a high fat-hypercholesterol diet with Salvia plebeia can increase antioxidant activity and depress peroxide formation in serum, as well as liver cholesterol and triglycerides.

Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A

  • Kwak, Geun-Hee;Choi, Seung-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.622-628
    • /
    • 2010
  • Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSO's selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.

Protective Effects of Methanol Extract and Alisol B 23-acetate of Alisma orientale on Acetaminophen-Induced Hepatotoxicity in Rats

  • Yang, Ki-Ho;Choi, Seong-Hee;Park, Jong-Cheol
    • Natural Product Sciences
    • /
    • v.18 no.2
    • /
    • pp.121-129
    • /
    • 2012
  • Hepatoprotective effects of methanol extract and alisol B 23-acetate of Alisma orientale were studied in acetaminophen (APAP)-treated rats. APAP increased hepatic content of lipid peroxide, which was suppressed by methanol extract and alisol B 23-acetate. The liver of rats treated with APAP had higher P-450, aminopyrine N-demethylase and aniline hydroxylase activities than those of normal control rats. The increases in hepatic drug metabolizing enzymes by the i.p. injection of APAP were significantly alleviated by the administration of methanol extract or alisol B 23-acetate. The injection of APAP also resulted in a substantial reduction of hepatic glutathione content and glutathione S-transferase activity, and the decreases were partially, but significantly, restrained by the oral administration of methanol extract prior to the i.p. injection of APAP. Hepatic activities of glutathione reductase (GR) and ${\gamma}$-glutamylcystein synthetase ${\gamma}$-GCS) were also decreased significantly in APAP-treated rats. The decreases in hepatic GR and ${\gamma}$-GCS activities by APAP injection were improved partially, but significantly, with administration of methanol extract of A. orientale. Treatment with alisol B 23-acetate also improved the hepatic ${\gamma}$-GCS activity significantly, but not GR.

Enhanced Antioxidant Enzymes Are Associated with Reduced Hydrogen Peroxide in Barley Roots under Saline Stress

  • Kim, Sang-Yong;Lim, Jung-Hyun;Park, Myoung-Ryoul;Kim, Young-Jin;Park, Tae-Il;Seo, Yong-Won;Choi, Kyeong-Gu;Yun, Song-Joong
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.218-224
    • /
    • 2005
  • Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root was most highly correlated with the CAT activity, indicating an increased role of CAT in hydrogen peroxide detoxification under salinity stress. In addition, the results suggest the significance of temporal and spatial regulation of each antioxidant isoform in determining the competence of the antioxidant capacity under saline stress.

Lycopene supplementation suppresses oxidative stress induced by a high fat diet in gerbils

  • Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.26-33
    • /
    • 2013
  • The effect of lycopene supplementation on the antioxidant system was investigated by analyzing lipid peroxide levels, glutathione contents, and antioxidant enzyme activities in Mongolian gerbils fed a high fat diet. Gerbils were fed on each experimental diet for 6 weeks; normal diet (NC), normal diet with 0.05% lycopene (NL), high fat diet (HF), and a high fat diet with 0.05% lycopene (HFL). Dietary supplementation of lycopene increased hepatic lycopene level in gerbils fed a normal or high fat diet (P < 0.05). Liver and erythrocyte concentrations of lipid peroxide increased in gerbils fed a high fat diet, whereas lycopene supplementation decreased liver and erythrocyte concentrations of lipid peroxide (P < 0.05). Hepatic total glutathione content was higher in the NL group than that in the NC group (P < 0.05). Total antioxidant status in plasma increased following lycopene supplementation compared with that of the non-lycopene supplemented groups (P < 0.05). Hepatic catalase activity increased following dietary lycopene supplementation (P < 0.05). Superoxide dismutase activity in liver remained unchanged with lycopene supplementation, but erythrocyte superoxide dismutase activity increased in NL group compared with NC group (P < 0.05). Glutathione-S-transferase activity increased in the NL group compared to NC group (P < 0.05). Liver and erythrocyte glutathione peroxidase activity increased significantly in the NL group compared to that in the HF group (P < 0.05). Liver glutathione reductase activity was higher in the NL group than that in the NC group (P < 0.05). These results suggest that lycopene supplementation may be efficient for preventing chronic diseases induced by oxidative stress related to high fat diet.