• Title/Summary/Keyword: peroxide level

Search Result 544, Processing Time 0.071 seconds

Oxidative Stability of Deep-Fried Instant Noodle Prepared with Ricebran Oil Fortified by Adding Antioxidants or by Blending with Palm Oil (항산화제 또는 팜유로 보강된 미강유를 이용한 라면의 산화안정성)

  • Kang, Dong-Ho;Park, Hye-Kyung;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.409-418
    • /
    • 1989
  • The oxidative stability of the ramyon prepared with ricebran oil fortified with ${\alpha}-tocopherol$, BHA, TBHQ, and ascorbyl palmitate+citric acid or blended with palm oil was studied to assess the suitability of the oil as the frying oil. The antioxidants were added to a ricebran oil at 0.02% level, respectively, while blended oils were prepared by adding a palm oil to the ricebran oil at ratios of 3:7, 5:5, and 7:3. Ramyon samples were prepared by frying steamed noodel with the oils. They were stored in dark at $35.0{\pm}0^{\circ}C$. for 90 days. Peroxide, acid, iodine values, dielectric constant, and fatty acid composition of the oils extracted from the samples were determined regularly. The oxidative stability of the extracted oils and storage stability of the samples were estimated from the results of the determinations. ${\alpha}-tocopherol$ did not exert any appreciable antioxidant effect on the extracted oil while BHA demonstrated some effect. Ascorbyl palmitate with citric acid and especially TBHQ exerted a considerable effect. The storage stability of the samples fried with the oil fortified with TBHQ was as good as that of the samples prepared with the palm oil. The stability of the samples improved as the palm oil content In the frying oil increased. The stability of the samples fried with the blended oil containing 70f) palm oil was comparable to that of the samples prepared with the pure palm oil

  • PDF

Protecting Effects by Rooibos Tea against Immobilization Stress-induced Cellular Damage in Rat (흰 쥐의 고정화 스트레스에 대한 루이보스티의 방어 효과)

  • Hong, Seong-Gil;Seo, Won-Sang;Jung, Ho-Kwon;Kang, Sang-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1222-1228
    • /
    • 1998
  • Stress will induce various changes in human metabolism. The remarkable phenomenon of these changes is increased energy metabolism that can induce many reactive oxygen species (ROS) production. ROS can peroxidize cellular macromolecules including lipid and protein. The object of this study was to investigate that stress may induce cellular damage by producing ROS and that Rooibos tea can protect cells against reactive oxygen species by immobilization stress in SD rat. The stress group significantly increased in 5-hydroxyindole acetic acid (5-HIAA), one of the stress hormone. Rooibos tea treatment had no effects on 5-HIAA contents, but body weight of Rooibos tea treated rat more increased than that of only the stress group. It was suggested that Rooibos tea colud not affect stress response itself, but protect against the another mechanism. We thought that the oxidative damage was caused by increased energy metabolism. Protein degradation level and lipid peroxide formation on index of oxidative damage significantly increased in the stress group. But the stress-induced activity change could not be observed in antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase. But the catalase activity of the brain significantly was inhibited by the stress. From these results, it was suggested that the immobilization stress induce the brain oxidative damage. However the oxidative damage was inhibited by feeding Rooibos tea containing various antioxidants, such as polyphenol, flavonoid and so on. Therefore, Rooibos tea have the protective effects against the stress caused by the ROS mediated cellular damage.

  • PDF

Protective Effect of DWP-04 Against Hepatotoxicity Induced by D-galactosamine (흰쥐에서 DWP-04가 D-galactosamine에 의해 유도된 간독성의 보호효과)

  • Lee Jung-Hee;Chi Sang Cheol;Kim Seok-Hwan;Shin Young-Ho;Choi Jongwon
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.461-467
    • /
    • 2005
  • This study was conducted to investigate the biological activity and hepatoprotective effect of DWP-04 [DDB : selenium yeast: glutathione (31.1 : 6.8 : 62.1(w/w/w)] in D-galactosamine (GaIN) intoxicated rats. The DWP-04 (50, 100 or 200 mg/kg) or its vehicle was orally administered everyday before the start of GaIN injection (400 mg/kg, ip) for two weeks and animal decapitated for 24 hrs after GaIN­injected. The activities of serum enzymes, markers of liver function, were increased in the GaIN group compared to normal group and significantly lowered in the DWP-04 pretreated group than in the GaIN group. Hepatic lipid peroxide level and activities of phase 1 enzymes were significantly higher than those of GaIN group compared to normal group and lower in the DWP-04 pretreated group than in the GaIN group, and phase II enzyme activities in liver were lower in the GaIN group than in the normal group and were increased in the DWP-04 pretreated group than in the GaIN group. Total hepatic glutathione content and glutathione biosynthesis enzymes were lower in the GaIN group than in the normal group and were increased in the DWP-04 pretreated group than in the GaIN group. Therefore, the current results indicated that DWP-04 administration alleviated the GaIN-induced adverse effect through enhancing the antioxidant enzyme activities.

Oxidative Stability of Deep-Fried Instant Noodle Prepared with Rapeseed Oil Fortified by Adding Antioxidants or by Blending with Palm Oil (항산화제 또는 팜유로 보강된 유채유를 이용한 라면의 산화안정성)

  • Park, Yun-Bo;Park, Hye-Kyung;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.468-479
    • /
    • 1989
  • The oxidative stability of the ramyon prepared with rapeseed oil fortified with antioxidants or blended with palm oil was studied to explore the possibility of substituting it for Imported frying fats and oils. Natural tocopherols, butylated hydroxyanisole(BHA), tertiarybutyl hydroquinone(TBHQ), and ascorbyl palmitate with citric acid were used at a level of 0.02 percent. Blended oils were prepared by adding a palm oil to the rapeseed oil at ratios of 7:3, 5:5, and 3:7(w/w), respectively. Ramyon samples were stored at $35.0{\pm}0.5^{\circ}C$. for 90 days. The values of parameters, such as peroxide value, unsaturation ratio, and dielectric constant, of the extracted oils were regularly determined. An organoleptic test for the flavor of the samples was also performed. The oxidative stability of the samples was estimated on the basis of the changes of the parameter values. The effectiveness of the antioxidants was in the order of TBHQ ${\gg}$ ascorbyl palmitate with citric acid>BHA>natural tocopherols. The oxidative stability of the ramyon prepared with the rapeseed oil containing 0.02 percent TBHQ was almost as good as that of the ramyon prepared with the palm oil. The stability of the ramyon prepared with the blended oil containing 70 percent palm oil was also as good as that of the ramyon prepared with the palm oil.

  • PDF

Protective Effect of White-Skinned Sweet Potato (Ipomoea batatas L.) from Indonesia on Streptozotocin-Induced Oxidative Stress in Rats (흰 쥐에서 streptozotocin으로 유발된 산화적 스트레스에 대한 인도네시아산 white-skinned sweet potato (WSSP, Ipomoea batatas L.)의 보호효과)

  • Bachri, Moch. Saiful;Jang, Hye-Won;Choi, Jong-Won;Park, Jong-Ok
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1569-1576
    • /
    • 2010
  • Sweet potato (Ipomoea batatas L.) is widely used in Indonesia and other countries as a traditional medicine for the treatment of diabetes mellitus (DM). The MeOH extract of white skinned sweet potatoes (WSSP) was administered orally in doses of 100 and 200 mg/kg body weight in streptozotocin (STZ)-induced diabetic rats. Experimental diabetes was induced by a single dose of STZ (45 mg/kg, i.p.) injection. Oxidative stress was measured by tissue lipid peroxide (LPO) levels, serum aspartate transaminase (AST), alanine transaminase (ALT), total triglyceride (TG), total cholesterol (TC) and by antioxidative enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase in the liver. An increase in blood glucose, LPO level, AST, ALT, TG and TC levels was observed in the STZ-induced diabetic rats. Administration of MeOH extract of WSSP at a dose of 200 mg/kg for two weeks caused a significant reduction in blood glucose, LPO levels, AST, ALT, TG and TC levels in the STZ-induced diabetic rats. Furthermore, oral administration of MeOH extract showed significant improvement in the activities of antioxidant enzymes (SOD, GPx, and CAT) compared to STZ-induced diabetic rats. In conclusion, the obtained results clearly indicate the role of oxidative stress in the induction of diabetes, and that the protective effects of MeOH extracts of WSSP could be used to benefit diabetic patients.

Antioxidative Activity and Cytotoxicity of Fermented Allium victorialis L. Extract (산마늘 발효추출물의 항산화활성과 세포독성)

  • Doh, Eun-Soo;Chang, Jun-Pok;Kil, Ki-Jung;Choi, Myung-Suk;Yang, Jae-Kyung;Yun, Chung-Weon;Jeong, Sun-Mi;Jung, Yun-Hae;Lee, Gun-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.30-39
    • /
    • 2011
  • This study was conducted to investigate the antioxidative activity and cytotoxicity of fermented Allium victorialis extract. The results were as follows; The total polyphenol content of A. victorialis extract was 2.63 mg/g, and that of fermented A. victorialis extract was 1.65 mg/g which decreased a little by fermentation. The total flavonoid content of A. victorialis extract was 57.77 mg/g, and that of fermented A. victorialis extract was 62.27 mg/g, and this could increase a little from fermentation. Electron donating ability of A. victorialis extract was lower than vitamin C(97.71%), but before fermentation it was 82.29% and after fermentation it became 82.40%. Nitrite scavenging ability of A. victorialis extract before and after fermentation showed lower numerical value than that of butylated hydroxytoluene(BHT) at pH 2.5 but that of A. victorialis extract expressed higher than that of BHT. Superoxide dismutase-like activity showed relatively low level, 15%. Nitrite production increased by A. victorialis extract but was inhibited after fermentation. Methyl diamphetamine (MDA) content was inhibited with increased concentration of A. victorialis extract compared with $H_2O_2$ treatment but there was not any difference before and after fermentation. Therefore, production of lipid peroxide(LPO) was inhibited by A. victorialis extract. Cell viability of fibroblast cell was tend to slightly decrease with increased concentration of A. victorialis extract, but not different with control.

The beneficial effect of ginsenosides extracted by pulsed electric field against hydrogen peroxide-induced oxidative stress in HEK-293 cells

  • Liu, Di;Zhang, Ting;Chen, Zhifei;Wang, Ying;Ma, Shuang;Liu, Jiyun;Liu, Jingbo
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.169-179
    • /
    • 2017
  • Background: Ginsenosides are the main pharmacological components of Panax ginseng root, which are thought to be primarily responsible for the suppressing effect on oxidative stress. Methods: 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and oxygen radical absorption capacity were applied to evaluate the antioxidant activities of the ginsenosides. Human embryonic kidney 293 (HEK-293) cells were incubated with ginsenosides extracted by pulsed electric field (PEF) and solvent cold soak extraction (SCSE) for 24 h and then the injury was induced by $40{\mu}M$ $H_2O_2$. The cell viability and surface morphology of HEK-293 cells were studied using MTS assay and scanning electron microscopy, respectively. Dichloro-dihydro-fluorescein diacetate fluorescent probe assay was used to measure the level of intracellular reactive oxygen species. The intracellular antioxidant activities of ginsenosides were evaluated by cellular antioxidant activity assay in HepG2 cells. Results: The PEF extracts displayed the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and stronger oxygen radical absorption capacity (with an oxygen radical absorption capacity value of $14.48{\pm}4.04{\mu}M\;TE\;per\;{\mu}g/mL$). The HEK-293 cell model also suggested that the protective effect of PEF extracts was dose-dependently greater than SCSE extracts. Dichloro-dihydro-fluorescein diacetate assay further proved that PEF extracts are more active (8% higher than SCSE extracts) in reducing intracellular reactive oxygen species accumulation. In addition, scanning electron microscopy images showed that the HEK-293 cells, which were treated with PEF extracts, maintained more intact surface morphology. Cellular antioxidant activity values indicated that ginsenosides extracted by PEF had stronger cellular antioxidant activity than SCSE ginsenosides extracts. Conclusion: The present study demonstrated the antioxidative effect of ginsenosides extracted by PEF in vitro. Furthermore, rather than SCSE, PEF may be more useful as an alternative extraction technique for the extraction of ginsenosides with enhanced antioxidant activity.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Effect of Graphene with Antioxidant Activity on Matrix Metalloproteinase in HT1080 Cells (항산화 활성을 가진 그래핀이 HT1080 세포에서 기질금속단백질분해효소에 미치는 영향)

  • Lee, Su-Gyeng;Kim, Moon-Moo;Oh, Yunghee
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1209-1215
    • /
    • 2013
  • Graphene is an allotrope of carbon that is composed of one-atom-thick planar sheets. It is known to have a preventive effect on cancer in photothermal therapy and a protective effect in DNA oxidation. The effect of graphene on oxidative stress and matrix metalloproteinases (MMPs) was investigated in human fibrosarcoma HT1080 cells. The results showed that graphene specifically exerted an inhibitory effect on DNA oxidation, but it did not inhibit other oxidative stress. In addition, graphene decreased the expression and the activation of MMP-2 and MMP-9 stimulated by phenazine methosulfate-m, which induces the production of intracellular hydrogen peroxide. In particular, the expression of antioxidant enzymes, such as superoxide dismutase (SOD-2), was decreased in the HT1080 cells, indicating that the decrease in the expression level of SOD was due to the antioxidant effect of graphene. These results suggest that the inhibitory effect of oxidative stress in the presence of graphene could inhibit the expression of MMPs in HT1080 cells. Based on the above results, graphene may have chemoprevention properties through inhibition of MMP-2 and MMP-9 related to metastasis.

Storage Effectiveness of Deep-Fried Potato Chip Prepared with Canola Oil Fortified with TBHQ and Silicone (Potato Chip 제조시 TBHQ 와 Silicone 첨가유에 의한 저장 연장 효과)

  • Jung, Byoung-Doo;Rhee, Soon-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.635-640
    • /
    • 1997
  • The oxidative stability of the potato chip prepared with canola oil fortified with antioxidnats was studied to explore the possibility of substituting it for imported frying fats and oils. BHT, BHA, TBHQ and silicone were added to the oil at a level of 0.02% and 10 ppm, respectively. Potato chip samples were prepared in a commercial scale and stored at $25.0{\pm}0.5^{\circ}C$ for 5 months. The oxidative stability of the extracted oils from potato chips during storage was estimated on the basis of some their physico-chemical changes, such as acid values, peroxide values, iodine values, ansidine values, fatty acid composition of the oils. An organoleptic test for the flavor of the samples was also performed. The oxidative stability of the samlpes was estimated on the basis of the changes of the parameter values. The effectiveness of the antioxidants was in the order of canola oil+TBHQ (0.02%)+silicone (10 ppm) > canola oil+TBHQ (0.02%) > canola oil+BHA (0.02%)+silicone (10 ppm) > canola oil+BHT (0.02%)+silicone (10 ppm) > canola oil+BHA (0.02%) > canola oil+BHT (0.02%) > canola oil. The antioxidant effect of canola oil+TBHQ (0.02%)+silicone (10 ppm) was more salient than any other antioxidant used in the potato chip.

  • PDF