• Title/Summary/Keyword: perovskite solar cells

Search Result 75, Processing Time 0.025 seconds

Development of Inorganic Metal Oxide based Hole-Transporting Layer for High Efficiency Perovskite Solar Cell (고효율 페로브스카이트 태양전지용 무기 금속 산화물 기반 정공수송층의 개발)

  • Lee, Haram;Mai, Cuc Thi Kim;Jang, Yoon Hee;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.60-65
    • /
    • 2020
  • In perovskite solar cells with planar heterojunction configuration, selection of proper charge-transporting layers is very important to achieve stable and efficient device. Here, we developed solution processible Cu doped NiOx (Cu:NiOx) thin film as a hole-transporting layer (HTL) in p-i-n structured methylammonium lead trihalide (MAPbI3) perovskite solar cell. The transmittance and thickness of NiOx HTL is optimized by control the spin-coating rate and Cu is additionally doped to improve the surface morphology of undoped NiOx thin film and hole-extraction properties. Consequently, a perovskite solar cell containing Cu:NiOx HTL with optimal doping ratio of Cu exhibits a power conversion efficiency of 14.6%.

Slot-die Coating Method for Manufacturing Large-area Perovskite Solar Cell (대면적 페로브스카이트 태양전지 제작을 위한 슬롯-다이코팅 방법)

  • Oh, Ju-young;Ha, Jae-jun;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.918-925
    • /
    • 2021
  • The perovskite solar cell is a next-generation solar cell that replaces the existing silicon solar cell. It is a solar cell device using an organic-inorganic hybrid material having a perovskite structure as a photoactive layer. It has advantages for the process and has shown rapid efficiency improvement over the past decade. In the process of commercialization of such perovskite solar cells, research and development for a large-area coating method should be carried out. As one of the large-area perovskite solar cell large-area coating methods, the slot-die coating method was studied. By using a meniscus to pass over the substrate and coating the solution, the 3D printer was equipped with a meniscus so that it could be coated. Variables that act during coating include bed temperature, coating speed, N2 blowing interval, N2 blowing height, N2 blowing intensity, etc. By controlling these, the perovskite absorption layer was manufactured and the coating conditions for manufacturing large-area devices were optimized.

Modification of NiO Using 2PACz for P-i-n Perovskite Solar Cells (P-i-n 페로브스카이트 태양전지 응용을 위한 2PACz을 이용한 NiO의 개질)

  • Seon-Min Lee;Seok-Soon Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.100-106
    • /
    • 2024
  • To improve charge transfer and surface contact between NiO and perovskite, sol-gel derived NiO is modified with [2-(9H-car-bazol-9-yl)ethyl] phosphonic acid (2PACz) in p-i-n structured perovskite solar cells (PeSCs). The phosphonic acid head group in the 2PACz can bind to the hydroxyl groups on the surface of NiO by a condensation reaction, which results in a better-matched energy level with the valence band of perovskite layers, reducing nonradiative recombination and energy loss. Furthermore, the formation of pin-hole free perovskite films is observed in the 2PACz modified NiO system. Consequently, the combination of sol-gel processed NiO with optimal 2PACz exhibits a higher efficiency of 17.08% and superior stability under ambient air conditions without any encapsulation, compared to a bare NiO based device showing 13.69%.

Air-Processed Efficient Perovskite Solar Cell via Antisolvent Additive Engineering (안티솔벤트 첨가제 공정에 의한 대기 중 고효율 페로브스카이트 태양전지 제작)

  • Se-Yeong Baek;Seok-Soon Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2024
  • Although antisolvent-assisted crystallization is one of the promising processes to produce high-quality perovskite films, general antisolvents such as chlorobenzene (CB) have toxic and volatile properties. In addition, CB is not suitable to control the crystallization of perovskite in the atmospheric air. In this work, isopropyl acetate (IA) is used as an eco-friendly antisolvent to demonstrate air-processed perovskite solar cells, and ethyl-4-cyanocinnamate (E4CN) with a cyano group, carbonyl group, and aromatic ring is introduced in IA to improve the performance and stability of devices. Defects at the surface and grain boundaries of the perovskite layer, such as un-coordinated Pb2+ and iodine, can be decreased resulting from the interaction of E4CN and perovskite, and thus reduced recombination and enhanced carrier transport can be expected. As a result, the perovskite device with E4CN achieves a high maximum power conversion efficiency (PCE) of 18.89% and outstanding stability, maintaining 60% of the initial efficiency for 300 h in the air without any encapsulation.

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor

  • Kayesh, Md. Emrul;Matsuishi, Kiyoto;Chowdhury, Towhid H.;Kaneko, Ryuji;Noda, Takeshi;Islam, Ashraful
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.712-717
    • /
    • 2018
  • In this letter, we have introduced copper chloride ($CuCl_2$) as an additive in the $CH_3NH_3PbI_3$ precursor solution to improve the surface morphology and crystallinity of $CH_3NH_3PbI_3$ films in a single solvent system. Our optimized perovskite solar cells (PSCs) with 2.5 mol% $CuCl_2$ additive showed best power conversion efficiency (PCE) of 15.22%. The PCE of the PSCs fabricated by $CuCl_2$ (2.5 mol%) additive engineering was 56% higher than the PSC fabricated with pristine $CH_3NH_3PbI_3$.

Au/Ag Bilayer Electrode for Perovskite Solar Cells (Au/Ag 이중층 전극 구조를 이용한 페로브스카이트 태양전지)

  • Lee, Junyeong;Jo, Sungjin
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2022
  • Generally, Au electrodes are the preferred top metal electrodes in most perovskite solar cells (PSCs) because of their appropriate work function for hole transportation and their resistance to metal-halide formation. However, for the commercialization of PSCs, the development of alternative metal electrodes for Au is essential to decrease their fabrication cost. Ag electrodes are considered one of the most suitable alternatives for Au electrodes because they are relatively cheaper and can provide the necessary stability for oxidation. However, Ag electrodes require an aging-induced recovery process and react with halides from perovskite layers. Herein, we propose a bilayer Au/Ag electrode to overcome the limitations of single Au and Ag metal electrodes. The performance of PSCs based on bilayer electrodes is comparable to that of PSCs with Au electrodes. Furthermore, by using the bilayer electrode, we can eliminate the aging process, normally an essential process for Ag electrodes. This study not only demonstrates an effective method to substitute for expensive Au electrodes but also provides a possibility to overcome the limitations of Ag electrodes.

Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer (구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가)

  • Lee, Jonghwan;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.94-98
    • /
    • 2020
  • The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.