DOI QR코드

DOI QR Code

Air-Processed Efficient Perovskite Solar Cell via Antisolvent Additive Engineering

안티솔벤트 첨가제 공정에 의한 대기 중 고효율 페로브스카이트 태양전지 제작

  • Se-Yeong Baek (Department of Chemical Engineering, Kunsan National University) ;
  • Seok-Soon Kim (Department of Chemical Engineering, Kunsan National University)
  • 백세영 (군산대학교 화학공학과) ;
  • 김석순 (군산대학교 화학공학과)
  • Received : 2024.02.27
  • Accepted : 2024.03.20
  • Published : 2024.04.10

Abstract

Although antisolvent-assisted crystallization is one of the promising processes to produce high-quality perovskite films, general antisolvents such as chlorobenzene (CB) have toxic and volatile properties. In addition, CB is not suitable to control the crystallization of perovskite in the atmospheric air. In this work, isopropyl acetate (IA) is used as an eco-friendly antisolvent to demonstrate air-processed perovskite solar cells, and ethyl-4-cyanocinnamate (E4CN) with a cyano group, carbonyl group, and aromatic ring is introduced in IA to improve the performance and stability of devices. Defects at the surface and grain boundaries of the perovskite layer, such as un-coordinated Pb2+ and iodine, can be decreased resulting from the interaction of E4CN and perovskite, and thus reduced recombination and enhanced carrier transport can be expected. As a result, the perovskite device with E4CN achieves a high maximum power conversion efficiency (PCE) of 18.89% and outstanding stability, maintaining 60% of the initial efficiency for 300 h in the air without any encapsulation.

안티솔벤트를 이용한 결정화는 밀도 높고 균일한 페로브스카이트 필름을 얻는 효과적인 접근 방법이나, 일반적으로 사용되는 chlorobenzene (CB)과 같은 안티솔벤트는 독성을 가지며, 공기 중에서 페로브스카이트 결정화의 제어가 용이하지 않다. 본 연구에서는 공기 중 공정에 적합하며 친환경적인 안티솔벤트인 isopropyl acetate (IA)를 사용하여 페로브스카이트 태양전지를 제작하고자 하며 사이아노기, 카보닐기 및 벤젠 고리와 같은 작용기를 포함한 ethyl-4-cyanocinnamate (E4CN)을 안티솔벤트에 첨가제로 사용함으로서 성능 및 안정성을 개선하고자 한다. E4CN과 페로브스카이트 결함과의 상호작용으로 페로브스카이트 필름에 존재하는 un-coordinated Pb2+ 및 I2 결함을 제어할 수 있으며 이로 인한 재조합의 억제와 전하추출의 개선을 관찰할 수 있다. 그 결과 E4CN을 사용한 페로브스카이트 소자는 기준 소자 대비 개선된 18.89%의 최대 전력 변환 효율을 보여준다. 더불어, 기준 소자의 경우, 소자효율이 시간에 따라 급격히 감소하여 200 시간 후 효율값이 0%까지 저하되지만 E4CN이 도입된 소자의 경우, 300 시간 후 초기 광전변환효율의 60%를 유지하는 개선된 안정성을 보여준다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부(MSIT)와 교육부의 재원으로 한국연구재단(NRF)의 지원을 받아 수행된 중견연구지원사업 (NRF-2021R1A2C1010194)의 결과입니다.

References

  1. J. Huang, Y. Yuan, Y. Shao, and Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications, Nat. Rev. Mater., 2, 1-19 (2017).
  2. W. Zeng, X. Liu, X. Guo, Q. Niu, J. Yi, R. Xia, and Y. Min, Morphology analysis and optimization: Crucial factor determining the performance of perovskite solar cells, Molecules, 22, 520 (2017).
  3. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344-347 (2013). https://doi.org/10.1126/science.1243167
  4. H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, and S. I. Seok, Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide, Science, 366, 749-753 (2019). https://doi.org/10.1126/science.aay7044
  5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc, 131, 6050-6051 (2009). https://doi.org/10.1021/ja809598r
  6. NREL, Best research-cell efficiencies, National renewable energy laboratory, https://www.nrel.gov/pv/cell-efficiency.html (accessed: July 2023).
  7. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, and N.-G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Adv. Energy Mater., 5, 1501310 (2015).
  8. C. M. Wolff, F. Zu, A. Paulke, L. P. Toro, N. Koch, and D. Neher, Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells, Adv. Mater., 29, 1700159 (2017).
  9. Y. Cui, S. Wang, C. Li, A. Wang, J. Ren, C. Yang, B. Chen, Z. Wang, and F. Hao, Eco-friendly antisolvent enabled inverted MAPbI3 perovskite solar cells with fill factors over 84%, Green Chem., 23, 3633-3641 (2021).
  10. J. Li, X. Hua, F. Gao, X. Ren, C. Zhang, Y. Han, Y. Li, B. Shi, and S. F. Liu, Green antisolvent additive engineering to improve the performance of perovskite solar cells, J. Energy Chem., 66, 1-8(2022) https://doi.org/10.1016/j.jechem.2021.06.023
  11. N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide, J. Am. Chem. Soc., 137, 8696-8699 (2015). https://doi.org/10.1021/jacs.5b04930
  12. F. Yang, G. Kapil, P Zhang., Z. Hu, M. A. Kamarudin, T. Ma, and S. Hayase, Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere, ACS Appl. Mater. Interfaces, 10, 16482-16489 (2018). https://doi.org/10.1021/acsami.8b02554
  13. B. Chen, P. N. Rudd, S. Yang, Y. Yuan, and J. Huang, Imperfections and their passivation in halide perovskite solar cells, Chem. Soc. Rev., 48, 3842-3867 (2019). https://doi.org/10.1039/C8CS00853A
  14. W.-J Yin., T. Shi, and Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104, 063903 (2014).
  15. C. Ran, J. Xu, W. Gao, C. Huang, and S. Dou, Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering, Chem. Soc. Rev., 47, 4581-4610 (2018). https://doi.org/10.1039/C7CS00868F
  16. S. Chen, X. Xiao, H. Gu, and J. Huang, Iodine reduction for reproducible and high-performance perovskite solar cells and modules, Sci. Adv., 7, eabe8130 (2021).
  17. C.-S. Kim, H.-J. Lee, S.-N. Kwon, and S.-I. Na, Enhancing the efficiency and stability of pin triple cation perovskite solar cells using benzyl cyanoacetate passivation agent, Appl. Surf. Sci., 611, 155640 (2023).
  18. M. Li, Z Ye., X. Chen, L. Xing, C. Yan, S. Wang, L. Xiao, S. Ji, Y. Jin, F. Ma, Q.-D. Yang, C. Yang, and Y. Huo, Defects passivation via d-glucosamine hydrochloride for highly efficient and stable perovskite solar cells, Org. Electron., 107, 106559 (2022).
  19. Y.-J. Kang, S.-N. Kwon, S.-P. Cho, Y.-H. Seo, M.-J. Choi, S.-S. Kim, and S.-I. Na, Antisolvent additive engineering containing dual-function additive for triple-cation p-i-n perovskite solar cells with over 20% PCE, ACS Energy Lett., 5, 2535-2545 (2020). https://doi.org/10.1021/acsenergylett.0c01130
  20. K. Wang, J Liu., J. Yin, E. Aydin, G. T. Harrison, W. Liu, S. Chen, O. F. Mohammed, and, S. De Wolf, Defect passivation in perovskite solar cells by cyano-based π-conjugated molecules for improved performance and stability, Adv. Funct. Mater., 30, 2002861 (2020).
  21. Z. Wu, M. Jiang, Z. Liu, A. Jamshaid, L. K. Ono, and Y. Qi, Highly efficient perovskite solar cells enabled by multiple ligand passivation, Adv. Energy Mater., 10, 1903696 (2020).
  22. Q. Cao, T. Wang, J. Yang, Y. Zhang, Y. Li, X. Pu, J. Zhao, H. Chen, X. Li, I. Tojiboyev, J. Chen, L. Etgar, and, X. Li, Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage, Adv. Funct. Mater., 32, 2201036 (2022).
  23. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, J. Mater. Chem. A, 1, 5628-5641 (2013). https://doi.org/10.1039/c3ta10518k
  24. Y. Zhang, Y. Li, L. Zhang, H. Hu, Z. Tang, B. Xu, and N.-G. Park, Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells, Adv. Energy Mater., 11, 2102538 (2021).
  25. L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei, B. Zhang, C. Chen, S. Zheng, H. Song, and J. Chen, Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency, Adv. Energy Mater., 11, 2100529 (2021).
  26. D. Glowienka and Y. Galagan, Light intensity analysis of photovoltaic parameters for perovskite solar cells, Adv. Mater., 34, 2105920 (2022).
  27. S. Wood, D. O'Connor, C. W. Jones, J. D. Claverley, J. C. Blakesley, C. Giusca, and F. A. Castro, Transient photocurrent and photovoltage mapping for characterisation of defects in organic photovoltaics, Sol. Energy Mater. Sol. Cells, 161, 89-95 (2017). https://doi.org/10.1016/j.solmat.2016.11.029
  28. T. Jiang, Z. Chen, X. Chen, X. Chen, X. Xu, T. Liu, L. Bai, D. Yang, D. Di, W. E. I. Sha, H. Zhu, and Y. M. Yang, Power conversion efficiency enhancement of low-bandgap mixed Pb-Sn Perovskite solar cells by improved interfacial charge transfer, ACS Energy Lett., 4, 1784-1790 (2019).