• Title/Summary/Keyword: permeable

Search Result 1,041, Processing Time 0.023 seconds

PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury

  • Kim, Dae Won;Lee, Sung Ho;Shin, Min Jea;Kim, Kibom;Ku, Sae Kwang;Youn, Jong Kyu;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Son, Ora;Sohn, Eun Jeong;Cho, Sung-Woo;Park, Jong Hoon;Kim, Hyun Ah;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.618-623
    • /
    • 2015
  • FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI.

PEP-1-GSTpi protein enhanced hippocampal neuronal cell survival after oxidative damage

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Son, Ora;Jo, Hyo Sang;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Choi, Yeon Joo;Yu, Yeon Hee;Kim, Duk-Soo;Cho, Sung-Woo;Kwon, Oh Shin;Cho, Yong-Jun;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.382-387
    • /
    • 2016
  • Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stress-induced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases.

A Study on the Characteristics of Wastewater Treatment by Rapid Infiltration Using Sand Soil (사토(砂土)를 이용(利用)한 급속토양삼투법(急速土壤滲透法)의 폐수처리(廢水處理) 특성(特性)에 관한 연구(研究))

  • Yang, Sang Hyon;Cho, Woong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 1987
  • In land treatment systems for organic waste removal, especially rapid intiltration method is well known as less climatic restrictions and less field area requirements as against the others. Therefore the present study on rapid infiltration is aimed to survey the waste removal rate, infiltration rate, variation of dissolved oxygen due to biological oxygen absorption and pH decrement using pilot infiltration column filled with permeable soil(sand) as media, also to find the waste load(COD) per unit area and nitrate conversion ratio from TKN. The results obtained here are as follows. 1) When the depth of sand layer is more than 1 meter, the COD removal would be reached steadly to 90% or more under the infiltration rate below 15~20cm/day, and would be no problem due to leached organic pollutants considering the depth of ground water table. 2) The COD removal per unit area($m^2$) can readily be expected to 10~14g/day with proper operation, and the decomposition of substrate would be attained mostly at the surface layer of the media. 3) Generally the conversion of TKN to the $NO_3{^-}$-N is seemed to be proportional to the COD removal rate if provided proper retention time.

  • PDF

The Development of Multi-channel Electrical Conductivity Monitoring System and its Application in the Coastal Aquifer (다채널 전기전도도 모니터링 시스템의 개발과 연안지역 공내수 모니터링에 대한 적용 사례)

  • Shin, Je-Hyun;Hwang, Se-Ho;Park, Kwon-Gyu;Park, Yun-Seong;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.156-162
    • /
    • 2005
  • Particularly in research related to seawater intrusion the change of fluid electrical conductivity is one of major concerns, and effective monitoring can help to optimize a water pumping performance in coastal areas. Special considerations should be given to the mounting of sensors at proper depth during the monitoring design since the vertical distribution of fluid electrical conductivity is sensitive to the characteristics of seawater intrusion zone. This tells us the multi-channel electrical conductivity monitoring is of paramount consequence. It, however, is a rare event when this approach becomes routinely available in that commonly used commercial stand-alone type sensors are very expensive and inadequate for a long term monitoring of electrical conductivity or water level due to their restricted storage and difficulty of real-time control. For this reason, we have developed a real-time monitoring system that could meet these requirements. This system is user friendly, cost-effective, and easy to control measurement parameters - sampling interval, acquisition range, and others. And this devised system has been utilized for the electrical conductivity monitoring in boreholes, Yeonggwang-gun, Korea. Monitoring has been consecutively executed for 24 hours, and the responses of electrical conductivity at some channels have been regularly increased or decreased while pumping up water. It, with well logging data implemented before/after pumping water, verifies that electrical conductivity changes in the specified depths originate from fluid movements through sand layer or permeable fractured rock. Eventually, the multi-channel electrical conductivity monitoring system makes an effective key to secure groundwater resources in coastal areas.

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF

Storage Quality of Sulhyang Strawberries as Affected by High O2 Atmosphere Packaging (고산소 환경기체조절 포장조건에 따른 설향 딸기의 저장 중 품질변화)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dongman
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.191-198
    • /
    • 2013
  • The storage quality of fresh Sulhyang strawberries packaged under modified atmospheres was investigated to examine the effect of high $O_2$ on the fruit. Fresh strawberries were packed into PP trays and top-sealed with PET/PP film. Initial gas compositions inside the packages were varied with air, 40% $O_2$/60% $N_2$, 60% $O_2$/40% $N_2$, and 80% $O_2$/20% $N_2$. Sealed packages in PE film bags with air and perforated PP trays were also used as another treatment and control, respectively. Quality attributes and viable cell counts of pathogenic bacteria were assessed during storage at $5^{\circ}C$ for 12 days. High $O_2$ concentration showed no significant effects on the physicochemical and microbial qualities of strawberries. Fruit packaged in PE film bags with 6-15% $O_2$ and 7-9% $CO_2$ during storage had the lowest viable cell counts of inherent microorganisms among the treatment samples. Growth of pathogenic bacteria was suppressed in perforated packages where molds occurred frequently. In an overall sensory aspect, the PE film packages exhibited higher scores than the others at the end of storage period. The experimental results suggested that gas-permeable film packaging with an appropriate combination of $O_2$ and $CO_2$ rather than gas-barrier tray packaging with an initially high $O_2$ concentration would be suitable for improving the storability of strawberries.

A Review on Applicability of Sustainable City Index - Focusing on GCI, EPI and CBI - (지속가능한 도시평가지표의 적용 가능성 검토 - GCI, EPI, CBI를 중심으로 -)

  • Yun, Hyerngdu;Park, Jinyoung;Choi, Taebong;Choi, Intae;Noh, Taihwan;Han, Bongho;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.593-606
    • /
    • 2015
  • This study was intended to develop Korean Environmental Sustainable City Index (ESCI) so that local governments can examine and identify urban environment issues and then come up with a policy to improve the environment and urban biodiversity for cities. Green City Index (GCI), Environmental Performance Index (EPI), and City Biodiversity Index (CBI) which have used worldwide were analyzed. Based on the result of analysis, evaluation indicators of ESCI were finally a total of 20 indicators under four categories, which are native biodiversity, living environment, ecosystem services, and governance and management. Then, five cities with biotope mapping and evaluation index were selected to apply ESCI for evaluation. In order to apply ESCI, local governments need to accumulate basic data. There should be a policy which requires local governments to build data for biotope mapping so that the rate of natural area, ecological network and permeable land surface can be evaluated. Indicators must be applied to be compliant with scale of the city and level of data building gradually.

Potentiating Activity of (+)-Usnic Acid on EDTA and Sodium Azide Methicillin-resistant Staphylococcus aureus (메티실린-내성 포도상구균에 대하여 EDTA 및 Sodium Azide 병용에 의한 우스닌산 약효증대)

  • Lee, Young-Seob;Kim, Hye-Sung;Lee, Jae Won;Lee, Dae-Young;Kim, Geum-Soog;Kim, Hyoun-Wook;Noh, Geon-Min;Lee, Seung Eun;Lee, Sun Ae;Song, Ok Hee;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • Methicillin-Resistant Staphylococcus aureus(MRSA) is a multidrug-resistant(MDR) strain. (+)-Usnic acid(UA) is uniquely found in lichens, and is especially abundant in genera such as Usnea and Cladonia. UA has antimicrobial activity against human and plant pathogens. Therefore, UA may be a good antibacterial drug candidate for clinical development. In search of a natural products capable of inhibiting this multidrug-resistant bacteria, we have investigated the antimicrobial activity of UA against 17 different strains of the bacterium. In this study, the effects of a combination of UA and permeable agents against MRSA were investigated. For the measurement of cell wall permeability, UA with concentration of Ethylenediaminetetraacetic acid(EDTA) was used. In the other hand, Sodium azide($NaN_3$) was used as inhibitors of ATPase. Against the 17 strains, the minimum inhibitory concentrations(MICs) of UA were in the range of $7.81-31.25{\mu}g/ml$. EDTA or $NaN_3$ cooperation against MRSA showed synergistic activity on cell wall. UA and in combination with EDTA and $NaN_3$ could lead to the development of new combination antibiotics against MRSA infection.

Effect of Surfactant on Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron (양이온-비이온 혼합계면활성제의 첨가가 영가철을 이용한 TCE환원에 미치는 영향)

  • Shin, Min-Chul;Choi, Hyun-Dock;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2007
  • Trichloroethylene (TCE) is a representative dense non-aqueous phase liquid (DNAPL) and has contaminated substance environments including soil and groundwater due to leakage and careless. DNPAL, has been treated by surfactant-enhanced aquifer remediation (SEAR). After application of SEAR, groundwater contains still surfactant as well as little amount of residual TCE. Permeable reactive barrier using zero-valent iron (ZW) is a very effective technology to treat the residual TCE in groundwater. In this study, the effect of the residual surfactant on the reductive dechlorination of residual TCE was investigated using ZVI. Mixed surfactant composed of nonioinic surfactant and cationic surfactant was used as a residual surfactant because of toxicity and enhancement of dechlorination rate. Structure of surfactant affected significantly the decrhlorination rate of TCE. Mixed surfactant system with relatively short polyethylene oxide (PEO) chain in nonionic surfactant, cationic surfactant did not affect TCE dechlorination rate. However, mixed surfactant system with relatively long PEO chain in nonionic surfactant shows that TCE dechlorination rate was significantly dependent on fraction of cationic surfactant and HLB of nonionic surfactant. Cationic surfactant with trimethyl ammonium group enhanced reductive dechlorination rate compared to that surfactant with pyridinium group.

Physico-chemical Properties of Disturbed Plastic Film House Soils under Cucumber and Grape Cultivation as Affected by Artificial Accumulation History

  • Han, Kyung-Hwa;Ibrahim, Muhammad;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Hur, Seung-Oh;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.105-118
    • /
    • 2015
  • This study was carried out to investigate the effects of profile disturbance with different artificial accumulation history on physico-chemical properties of soil under plastic film house. The investigations included soil profile description using soil column cylinder auger F10cm x h110cm, in situ and laboratory measurements of soil properties at five sites each at the cucumber (Site Ic ~ Vc) and grape (Site Ig ~ Vg) plastic film houses with artificial soil accumulation. The sites except sites Ic, IVc, IVg and Vg, belong to ex-paddy area. The types of accumulates around root zone included sandy loam soil for 3 sites, loam soil for 1 site, saprolite for 2 sites, and multi-layer with different accumulates for 3 sites. Especially, Site IIg has mixed plow zone (Ap horizon) with original soil and saprolite, whereas disturbed soil layers of the other sites are composed of only external accumulates. The soil depth disturbed by artificial accumulation ranged from 20 cm, for Site IIg, to whole measured depth of 110 cm, for Site IVc, Vc, and Site IVg. Elapsed time from artificially accumulation to investigation time ranged from 3 months, Site IIc, to more than 20 years, Site Vg, paddy-soil covering over well-drained upland soil during land leveling in 1980s. Disturbed top layer in all sites except Site Vg had no structure, indicating low structural stability. In situ infiltration rate had no correlation with texture or organic matter content, but highest value with highest variability in Site IIIc, the shortest elapsed time since sandy loam soil accumulation. Relatively low infiltration rate was observed in sites accumulated by saprolite with coarse texture, presumably because its low structural stability in the way of weathering process could result in relatively high compaction in agro-machine work or irrigation. In all cucumber sites, there were water-transport limited zone with very low permeable or impermeability within 50 cm under soil surface, but Site IIg, IIIg, and Vg, with relatively weak disturbance or structured soil, were the reverse. We observed the big change in texture and re-increase of organic matter content, available phosphate, and exchangeable cations between disturbed layer and original soil layer. This study, therefore, suggest that the accumulation of coarse material such as saprolite for cultivating cash crop under plastic film house might not improve soil drainage and structural stability, inversely showing weaker disturbance of original soil profile with higher drainage.