• 제목/요약/키워드: permeable

검색결과 1,046건 처리시간 0.03초

투수성 아스팔트 포장 구조설계를 위한 설계인자 도출 및 설계방법에 관한 연구 (Establishment of Design Factors and Procedure for Permeable Asphalt Pavements Structural Design)

  • 유현우;오정호;정영욱;한신인
    • 대한토목학회논문집
    • /
    • 제38권1호
    • /
    • pp.113-119
    • /
    • 2018
  • 현재 국내에서는 도심지 및 주거지에 원활한 물순환 구조를 이루기 위해 저영향개발에 근거한 투수성 포장 시스템 구축에 대한 시도를 하고 있다. 본 연구는 투수성 아스팔트 포장 구조 설계를 위한 포장인자 구축 및 설계법을 제안하고자 한다. 선행 연구 분석 결과, 1993년 AASHTO 설계법이 적합한 것으로 확인 되었다. 본 연구에서는 투수성 아스팔트 포장 재료의 상대구조계수 같은 주요 설계인자를 선행연구 분석을 통해 정량적으로 산정하였으며, 1993년 AASHTO 설계법 및 국내국도설계기준을 적용한 투수성 포장 구조 설계 프로그램을 개발하였다. 본 연구에서 개발된 프로그램 및 한국형 도로 설계법 프로그램을 비교한 결과 다양한 교통량 및 노반 지지력 조건에서 합리적인 포장 설계 두께를 산정하는 것을 확인하였다.

평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정 (Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests)

  • 최용진;오정호;한신인;안재훈;신현석
    • 한국지반공학회논문집
    • /
    • 제33권12호
    • /
    • pp.75-80
    • /
    • 2017
  • 도심 홍수 및 물순환 왜곡을 해결하기 위한 대표적 저영향개발기술 중 하나인 투수 블록포장이 포장시설로서 활발하게 적용되고 있다. 하지만 국내의 경우 설계법이 잘 정립되어있지 않고 국외에선 AASHTO 93 연성포장 설계법을 구조설계법으로 적용하고 있긴 하나 투수성 포장재료의 상대강도계수에 대한 정보가 부족하여 다양한 재료에 대한 설계적용이 어렵다는 단점이 있다. 이에 따라 본 연구에선 평판재하시험을 통해 투수 블록포장 재료의 상대강도계수를 산정하는 방법을 제시하고, 투수성 포장 실증현장에서 평판재하시험을 실시하여 이를 산정하였다. 산정된 개립도 골재와 투수 블록포장 표층의 상대강도계수는 전체적으로 기존의 값과 유사한 경향을 나타냈다. 본 연구에서 제시한 방법을 사용하여 향후 설계를 위한 투수 블록포장 재료의 상대강도계수를 산정할 수 있을 것으로 판단된다.

미생물토양시트를 충진한 도로포장용 다공성 콘크리트의 제조 및 수질정화특성 (Preparation and Water Quality Purification of Permeable Concrete Pavement Filled with Microbial-Soil Sheet)

  • 강영현;황필기;강선홍
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.727-733
    • /
    • 2009
  • This study was performed to investigate the physical characteristics like compressive strength, permeability, porosity and the water quality removal characteristics of permeable concrete pavement filled with microbial-soil sheet to remove SS, organic matter and nutrients in artificial rainfall. As a result, it can show the removal efficiency is SS 90~95%, COD 85~93%, BOD 80~83%, T-N 61~75%, T-P 71~78% on WAPS I(W1) and WAPS II(W2). Therefore, permeable concrete pavement filled with microbial-soil sheet shows higher removal efficiency(SS 10%, organic matter and nutrients 30%) than a conventional porous concrete(W3). By filling microbial-soil sheet to permeable concrete pavement, we confirm that the function and efficiency are improved significantly and that a naturally-friendly facility can be developed and applied to treat non-point sources.

Physical and Mechanical Properties of Permeable Polymer Concrete

  • Sung, Chan-Yong
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.44-50
    • /
    • 1997
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc.. This study was to explore a possibility of using stone dust and heavy calcium carbonate as fillers for the permeable polymer concrete. Different mixing pro-portions were tried to find an optimum mixing proportion of the permeable polymer concrete. The tests were carried out at 20 f 1 t and 60 ${\pm}$ 2% relative humidity. At 7 days of curing, compressive, flexural and splitting tensile strengths and water permeability ranged between 209~246kgf/cm$^2$, 101 ~ l2lkgf/cm$^2$, 36~52kgf/cm$^2$ and 3.076 ~ 4.390L/cm$^3\;^2$/hr, respectively. It was concluded that the stone dust and heavy calcium carbonate could be used in the permeable polymer concrete.

고로급냉슬래그를 활용한 투수성 모르타르의 공학적 특성에 관한 기초연구 (Engineering Characteristics of Permeable Mortar using Water-Quenched Blast Furnace Slag as Eine Aggregates)

  • 방윤경;박재로
    • 기술사
    • /
    • 제33권4호
    • /
    • pp.77-83
    • /
    • 2000
  • In this study, engineering characteristics of permeable mortar using water-quenched blast furnace slag as fine aggregates were analyzed by laboratory experiments to examine its suitability for permeable concrete pavement techniques. Engineering characteristics of mortar were investigated by performing both the compressive, flexural strength tests together with the constant head permeability tests for twenty-six types of mixing samples having different percetage of slag, cement and water. After 28days of curing, every performance was tested to find optimum mixture. When the go coefficient of permeability was 10$\^$-2/cm / sec and flexural strength was 30kg/㎠, we conclusion that the best mix design in permeable mortar was made in the condition,60% of cement and 20% of water percentage of unit slag contents. From the present investigations, it is concluded that suitability for permeable concrete pavement techniques using water-quenched blast furnace slag as fine aggregates may possibly be used to achieve effects on strength together with drainage effects.

  • PDF

집.배수용 투수성 폴리머 콘크리트 관의 농업 수리시설물의 현장적용 (Field Application of Permeable Polymer Concrete Pipe for Drainage)

  • 민정기;연규석;성찬용
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.136-143
    • /
    • 2003
  • This study is performed to evaluate performance of the developed pipe when using for underground drainage in fm land, the efficiency of the pipe is examined such as quantity of drainage, water temperature and other field performance in all weather condition. Results of this study, the higher permeability through wall of the pipe is achieved by making various size pores using open-graded aggregate. And in all weather conditions, permeable polymer concrete pipe perform much better than conventional perforated pipes. During rice farming period, quantity of drainage the permeable polymer concrete pipe is 1.25 time greater than conventional perforated pipes. Therefore, use of the permeable polymer concrete pipe is greater advantages when considering collecting and draining capacity compared with conventional perforated pipes.

Engineering Properties of Permeable Polymer Concrete Using Bottom Ash and Recycled Coarse Aggregate

  • Sung, Chan-Yong;Kim, Jong-Hyouk
    • 한국농공학회논문집
    • /
    • 제48권7호
    • /
    • pp.25-31
    • /
    • 2006
  • Permeable polymer concretes can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using bottom ash as filler and recycled coarse aggregate of industrial by-products for permeable polymer concrete. The tests carried out at $20{\pm}1^{\circ}C$ and $60{\pm}2%$ relative humidity. At 7 days of curing, unit weight, void ratio, compressive and flexural strength and coefficient of permeability ranged between $1,652{\sim}1,828kgf/m^{3},\;15{\sim}29+%,\;18.2{\sim}24.5\;MPa,\;6.4{\sim}8.4\;MPa\;and\;6.8{\times}10^{-2}{\sim}1.7{\times}10^{-1}\;cm/s$, respectively. It was concluded that the bottom ash and recycled coarse .aggregate can be used in the permeable polymer concrete.

투수성 폴리머 콘크리트의 동결융해 저항성에 관한 연구 (A Study on the Freezing and Thawing Resistance of Permeable Polymer Concrete)

  • 박응모;조영국;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.331-336
    • /
    • 1999
  • Permeable polymer concrete in this study is one of the environment conscious concrete that can be applied at road, side walks and river embankment, etc. The purpose of this study is to evaluate the effects of mix proportions such as resing content, filler-binder ratio and aggregate ratio on the freezing and thawing resistance of permeable polymer concrete. The permeable polymer concrete are prepared with the resin ratio of 5%, 6% and 7%, filler-binder ratio of 0, 0.5 and 1.0, and 2.5~5mm sized aggregate ratio to standard sand of 10:10, 10:20, 20:10 and 20:20. It is tested for freezing and thawing test according to ASTM C 666092, and then, weight change, length change, relative dynamic modulus, durability factor, and compressive and flexural strengths after test are measured. From the test results, the resistance to freezing and thawing of permeable polymer concrete increased with increase the resing content, filler-binder ratio and fine aggregate ratio.

  • PDF

투수성 콘크리트의 동결융해 저항성에 관한 연구 (A Study on the Freeze-Thaw Resistance of Water-permeable Concretes)

  • 은재기;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.433-438
    • /
    • 2000
  • The purpose of this study is to examine the resistance of water-permeable concretes to freezing and thawing action. The water-permeable concretes with cement-aggregate ratio of 1:5.5(by weight) and two kinds of admixture content [SP : superplasticizer(0, 1.0%), HPAE : high performance air entraining agent(0.5, 1%)] used OPC(ordinary portland cement) as binder were prepared, and then tested for relative dynamic modulus of elasiticity, mass change, length change and durablity factor. It's been concluded from the test results that the superior relative dynamic modulus of elasiticity and durability factor of water-permeable concretes were obtained at superplaciticizer 1.0% after 300 cycles. The water-permeable concretes used superplasiticizer 1.0% having relative durability factor of 88% after 300 cycles.

  • PDF

투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석 (A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow)

  • 김인철
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.