• 제목/요약/키워드: permanent magnet synchronous machine drive

검색결과 58건 처리시간 0.022초

세탁기용 영구자석 동기전동기의 특성 향상에 관한 연구 (The Study on the improvement of Characteristics of Permanent Magnet Synchronous Motor for Washing Machine)

  • 정대성
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.47-53
    • /
    • 2015
  • IPMSM(Insert Permanent Magnet Synchronous Motor) is a very high degree of freedom in the design according to the permanent magnet insertion position. And the performance of IPMSM is affected a lot on barrier shape which determines the magnetic flux path from magnet. Thus the position of permanent magnet and the barrier shape has to be designed by considering both specification and operation condition. In the paper, the permanent magnet and barrier shape which is suitable for direct drive motor of washing machine has been studied. In addition, in order to verify the validity of the study, the test was evaluated by making a prototype motor.

Direct Torque Control Strategy (DTC) Based on Fuzzy Logic Controller for a Permanent Magnet Synchronous Machine Drive

  • Tlemcani, A.;Bouchhida, O.;Benmansour, K.;Boudana, D.;Boucherit, M.S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.66-78
    • /
    • 2009
  • This paper introduces the design of a fuzzy logic controller in conjunction with direct torque control strategy for a Permanent Magnet synchronous machine. A stator flux angle mapping technique is proposed to reduce significantly the size of the rule base to a great extent so that the fuzzy reasoning speed increases. Also, a fuzzy resistance estimator is developed to estimate the change in the stator resistance. The change in the steady state value of stator current for a constant torque and flux reference is used to change the value of stator resistance used by the controller to match the machine resistance.

이중 인버터를 이용한 표면 부착형 영구자석 동기전동기의 약자속 제어 (Flux Weakening Control for Surface Mounted Permanent Magnet Synchronous Machine Driven by Dual Inverter)

  • 김영남;이용재;하정익
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.437-442
    • /
    • 2013
  • For open-end permanent magnet synchronous machine(PMSM) with dual inverter system, where one inverter is connected to the source and the other is flying, the dc link voltage of the flying inverter can be boosted through the machine. For this reason, when compared with single inverter drive system, higher voltage can be applied to PMSM, and higher torque can be generated in the flux weakening region. In this case, however, active and reactive powers are separately supplied by each inverter to maintain the dc link voltage of flying inverter. Therefore, the required flux weakening control is different from the conventional method for a single inverter drive system. This paper proposes the novel flux weakening control method which maximizes the active voltage component in a dual inverter PMSM drive system. The proposed method was demonstrated and verified through experimental results.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.

고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 실험적 검증 (Design and Experimental Verification of an Interior Permanent Magnet Motor for High-speed Machines)

  • 김성일;이근호;이창하;홍정표
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.306-310
    • /
    • 2010
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet synchronous motors have a number of merits such as high efficiency and high power density. Therefore, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted permanent magnet synchronous motor (SPMSM) of them is mainly used as a high-speed machine. However, the motor has a fatal flaw due to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the SPMSM. Thus, in this paper, an interior permanent magnet synchronous motor (IPMSM) is applied in order to drive the air-blower of FCEV instead of the SPMSM, and the experimental results of two models are compared to verify the capability of the IPMSM for high-speed applications.

역기전력 추정 기반 SMPMSM 센서리스 드라이브에서 저항 오차가 대역폭에 미치는 영향 (Influence of Resistance Error to the Bandwidth of Back-EMF Estimation based SMPMSM Sensorless Drives)

  • 김재석;설승기
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.418-426
    • /
    • 2016
  • This paper analyzes the effect of resistance error to the performance of sensorless drive system of surface-mounted permanent magnet synchronous machine (SMPMSM) based on the back-EMF observer. The analysis shows that the bandwidth of the entire sensorless drive system decreased in the low-speed region when using smaller resistance value than the actual one in the back-EMF observer. Even if the back-EMF observer invokes estimation error, the entire sensorless drive system does not make any steady-state position error. These characteristics may have positive effects such as extension of the low speed limit that goes further down in the sensorless drive. The validity of the analysis is verified by the experimental setup comprising the MG set.

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors

  • Lee, Kwang-Woon;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.604-614
    • /
    • 2012
  • This paper presents a comparative study of position sensorless control schemes based on back-electromotive force (back-EMF) estimation in permanent magnet synchronous motors (PMSM). The characteristics of the estimated back-EMF signals are analyzed using various mathematical models of a PMSM. The transfer functions of the estimators, based on the extended EMF model in the rotor reference frame, are derived to show their similarity. They are then used for the analysis of the effects of both the motor parameter variations and the voltage errors due to inverter nonlinearity on the accuracy of the back-EMF estimation. The differences between a phase-locked-loop (PLL) type estimator and a Luenberger observer type estimator, generally used for extracting rotor speed and position information from estimated back-EMF signals, are also examined. An experimental study with a 250-W interior-permanent-magnet machine has been performed to validate the analyses.

Performance Comparison of PM Synchronous and PM Vernier Machines Based on Equal Output Power per Unit Volume

  • Jang, Dae-Kyu;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.150-156
    • /
    • 2016
  • This paper compares the performances of permanent-magnet synchronous (PMS) and permanent-magnet vernier (PMV) machines for low-speed and high-torque applications. For comparison with the PMS machines, we consider two types of the PMV machine. The first one has surface-mounted permanent magnets (PMs) on the rotor and the other has PMs inserted on both sides of the stator and rotor. The PMS and PMV machines are designed to meet the condition of equal output power per unit volume. We analyze the magnetic fields of the machines using a two-dimensional finite element analysis (FEA). We then compare their performances in terms of the generated torque characteristics, power factor, loss, and efficiency.

고속 운전용 영구자석형 동기 전동기(PMSM)의 설계 (Design of Permanent Magnet Synchronous Motor for High-Speed Drive)

  • 장석명;조한욱;최장영;최상호;최상규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.141-143
    • /
    • 2005
  • A permanent magnet synchronous motor motor for high-speed drive was developed based on an analytical method. Especially. rated speed and torque according to switching scheme are offered. A prototype machine was also fabricated and tested to confirm the design. Preliminarily obtained experimental data using the prototype machine shows the validity of the design.

  • PDF

A Loss Minimization Control Strategy for Direct Torque Controlled Interior Permanent Magnet Synchronous Motors

  • Siahbalaee, Jafar;Vaez-Zadeh, Sadegh;Tahami, Farzad
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.940-948
    • /
    • 2009
  • The main objective of this a paper is to improve the efficiency of permanent magnet synchronous motors (PMSMs) by using an improved direct torque control (DTC) strategy. The basic idea behind the proposed strategy is to predict the impact of a small change in the stator flux amplitude at each sampling period to decrease electrical loss before the change is applied. Accordingly, at every sampling time, a voltage vector is predicted and applied to the machine to fulfill the flux change. The motor drive simulations confirm a significant improvement in efficiency as well as a very fast and smooth response under the proposed strategy.