• Title/Summary/Keyword: permanent magnet position

Search Result 404, Processing Time 0.024 seconds

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Reduced-Order Unscented Kalman Filter for Sensorless Control of Permanent-Magnet Synchronous Motor

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.683-688
    • /
    • 2017
  • The unscented Kalman filter features a direct transforming process involving unscented transformation for removing the linearization process error that may occur in the extended Kalman filter. This paper proposes a reduced-order unscented Kalman filter for the sensorless control of a permanent magnet synchronous motor. The proposed method can reduce the computational load without degrading the accuracy compared to the conventional Kalman filters. Moreover, the proposed method can directly estimate the electrical rotor position and speed without a back-electromotive force. The proposed Kalman filter for the sensorless control of a permanent magnet synchronous motor is verified through the simulation and experimentation. The performance of the proposed method is evaluated over a wide range of operations, such as forward and reverse rotations in low and high speeds including the detuning parameters.

Shape Optimization for Reduction of Cogging Torque in Permanent Magnet Motor by Sensitivity Analysis (영구자석전동기의 코깅토오크저감을 위한 민감도에 의한 형상 최적화)

  • 박일한;이범택;한현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1246-1252
    • /
    • 1990
  • In order to reduce the cogging torque in a permanent magnet motor, a method to optimize the shape of permanent magnet and iron pole is presented. Sine the cogging torque comes from the irregular system energy variation according to the rotor position, system energy variation is taken as object function and the object function is minimized to optimize the shape. The positions of permanent magnet surface and iron pole surface are chosen as design parameters and sensitivity of object function with respect to the design parameter is calculated. The shape is changed according to sensitivity can be generated by methods that exploit the FEM formulation. A numerical example shows that the cogging torque is reduced to about 10% of the original value.

  • PDF

Implementation of Position Control of PMSM with FPGA

  • Reaugepattanawiwat, Chalermpol;Eawsakul, Nitipat;Watjanatepin, Napat;Pinprathomrat, Prasert;Desyoo, Phayung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1254-1258
    • /
    • 2004
  • This paper presents of position control of Permanent Magnet Synchronous Motor (PMSM) the implementation with Field Programmable Gate Array (FPGA) is proposed. Cascade control with inner loop as a current control and an outer loop as a position control is chosen for simplicity and fast response. FPGA is a single chip (single processing unit), which will perform the following tasks: receive and convert control signal, create a reference current signal, control current and create switch signal and act as position controller in a addition of zero form. The 10 kHz sampling frequency and 25 bit of floating point data are defined in this implementation.The experimental results show that the performance of FPGA based position control is comparable with the hardware based position control, with the advantage of control algorithm flexibility

  • PDF

A Study of Initial Pole Position Estimation for Interior Permanent Magnet Motor (매입형 영구자석 전동기의 초기 극위치 추정에 관한 연구)

  • Park, Chang-Soo;Lee, Geun-Ho;Nam, Hyuk;Lee, Ji-Young;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.955-957
    • /
    • 2003
  • In this paper deal with Initial Pole Position Estimation for Interior Permanent Magnet Motor. Generally, Brushless motor is considered Initial Pole Position with absolute encoder or resolver, etc. In the motor, the flux from the magnets is large enough to saturate the stator iron, results in different inductance values along the pole position. Based upon the relationship between magnitude of inductance and the resultant magnetic filed, initial pole position is estimated at standstill without position sensors, especially, this paper provide the direction of the magnetization. Finally, analysis results are presented to confirm ability of initial pole position estimation.

  • PDF

Electromagnetic Effects of BPSCCO Superconductor (BPSCCO 초전도체의 전기 자기적 효과)

  • 이상헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.112-114
    • /
    • 2001
  • The magnetic suspension of a high T$\sub$c/ BipbSrCaCuO superconductor beneath toroial Permanent magnet was examined by means of an improved magneto-balancing method at 77K. Both the experimental values of the suspending position and the force exerted upon the superconducting specimen were in good agreement with those calculated from the magnetization curve of the specimen and the magnetic field map of the used permanent magnet.

  • PDF

Permanent Magnet Overhang Effect in Permanent Magnetic Actuator Using 3 Dimension Equivalent Magnetic Circuit network Method

  • Lim Seung-Bin;Kwon Ho;Kwon Sam-Young;Choi Seung-kil;Baek Soo-Hyun;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.123-128
    • /
    • 2005
  • This paper presents an analysis of the permanent magnet overhang effect for the permanent magnetic actuator. Generally, the overhang is often used to increase the force density in permanent magnet machineries. The overhang is particularly profitable in reducing the volume after increasing the force density per volume when using the overhang effect of the permanent magnet. Therefore, the 3D Equivalent Magnetic Circuit Network Method (3D EMCN) has been used in this paper. According to the plunger position, the flux distribution per overhang length and the holding force are quantitatively compared. Furthermore, an appropriate length of the overhang has been proposed. To confirm the accuracy of the analysis method, the results of 2D FEM and 3D FEM are compared for the basic model.

Instant Torque of Salient Pole Rotor Type Single-Phase SRM According to Installed Permanent Magnet Starting Device or Not (영구자석 기동장치의 유무에 따른 회전자 돌극형 단상 SRM의 순간 토오크)

  • Kim Jun-Ho;Lee Eun-Woong;Lee Jong-Han;Kim Yong-Hun;Lee Hyun-Woo;Lee Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.959-961
    • /
    • 2004
  • A multi pole SRM(switched reluctance motor) is applied by the regulated current in regular sequence. So, it can be started by itself. But a single phase SRM can not be started by itself because the positive torque is only generated in the limited zone which the inductance is increased. Therefore, it is required auxiliary device for self starting which place the rotor in start position. The prototype was designed and fabricated in the previous research. It has the permanent magnet, which is installed in the bottom of the rotor, for self starting. But the permanent magnet affect the prototype during operation and cause the decrease of the torque and speed. The influence of the permanent magnet on the average torque and speed was already confirmed. On this paper, the instant torque of the prototype was calculated from the experiment results which is the inductance and current according to installed permanent magnet or not.

  • PDF

A Detecting Method of Initial Rotor Position for Permanent Magnet Synchronous Motor (영구자석 동기전동기의 회전자 초기위치 검출법)

  • Ahn, Jun-Young;You, Wan-Sik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2136-2138
    • /
    • 1997
  • This paper describes a new detecting method of initial rotor position for PMSM without a position sensors. The proposed method uses the fact that the back-EMF is differently generated according to tile initial rotor position of Permanent Magnet Synchronous Motor (PMSM). The voltage with short duty is impressed to each phase at standstill. Then, we can detect the rotor position by comparing the amplitudes and signs of three phase current each other. Experimental results show the validity of the proposed method.

  • PDF

Initial Rotor Position Estimation for an Interior Permanent-Magnet Synchronous Motor using Inductance Saturation (인덕턴스의 포화현상을 이용한 IPMSM의 회전자 초기위치 추정)

  • Lee, Yoon-Kyu;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.96-98
    • /
    • 2009
  • This paper propose a method to detect the rotor position of IPMSM(Interior permanent magnet synchronous motor) at standstill without a position sensor. The proposed method is based on current variation caused by the magnetic saturation of stator core as rotor position. By choosing an appropriate voltage vector and applying it to phase winding, it enables the algorithm to discern between a north pole and south pole, and subsequently estimates an absolute position. This method dose not depend on the model of the motor and the motor parameter.

  • PDF