• Title/Summary/Keyword: permanent magnet machines

Search Result 220, Processing Time 0.031 seconds

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

Basic Study of IPMSM with High-Temperature Superconducting Wire Rod

  • Okada, Kazuya;Morimoto, Shigeo;Sanada, Masayuki;Inoue, Yukinori
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • It is important to improve the efficiencies of motors to overcome problems such as decreasing energy reserves and environmental pollution. Superconductors are promising for developing high-efficiency motors. However, superconducting wires must be kept in critical conditions and the AC loss needs to be minimized. In this paper, a design of a superconducting interior permanent magnet synchronous motor (IPMSM) is proposed that reduces the AC loss. The characteristics of superconducting and normal-conducting IPMSMs are compared. The proposed superconducting IPMSM has a low AC loss and a very high efficiency at low speeds.

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

Analysis of Interior Permanent Magnet Synchronous Machines using Thin Type Ferrite Magnet (고밀도화 페라이트 자석을 이용한 매입형 영구자석 동기기의 특성 해석)

  • Im, Young-Hun;Hwang, Seon-Ik;Jang, Seok-Myeong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.858-859
    • /
    • 2011
  • 고성능과 고효율 전동기인 매입형 영구자석 동기기에 사용되고 있는 희토류계 영구자석은 높은 가격과 수급 문제로 인해 최근 이슈화 되고 있다. 희토류계 영구자석을 대체하여 페라이트 영구자석을 적용할 수 있지만 낮은 잔류자속밀도로 인해 고출력을 얻을 수 없다는 문제점이 있다. 그러나 최근 높은 잔류자속밀도를 가진 고밀도화 페라이트 자석이 출시되면서 이를 적용한 매입형 영구자석 동기기의 특성을 해석할 필요성을 가지게 되었다. 본 논문에서는 고밀도화 페라이트 자석을 이용한 매입형 영구자석 동기기의 특성 해석을 하였다. 특히 영구자석의 재질 변경으로 인해 동기기의 토크와 토크 리플의 변화를 비교하고 코깅 토크에 의한 변화도 비교하였다. 또한 매입형 회전자내에 영구자석의 형상을 1층 및 3층으로 적용하여 구조에 따른 해석을 통해 특성을 비교함으로서 고밀도화 페라이트 자석의 효율적인 적용을 얻기 위한 회전자 구조를 선택하고자 한다. 또한 이를 통해 고밀도화 페라이트 자석의 적용 가능성을 예측하고자 한다.

  • PDF

Characteristic Analysis of Tubular Type Linear Oscillating Actuator According to Permanent Magnet Array (영구자석 배열에 따른 Tubular형 직선 왕복 엑추에이터의 특성해석)

  • Jang, S.M.;Choi, J.Y.;Lee, S.H.;Cho, S.K.;Yoo, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1048-1050
    • /
    • 2003
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic con type loud speakers to stilting engine driven linear reciprocating alternators, compressors, textile machines etc. In this paper, we analyze the characteristics of tubular linear motor with Halbach and radial magnet array respectively. We already derived magnetic field solutions due to the PMs and to the currents and Motor thrust. On the basis of analytical field solutions, this paper deals with flux linkages and back emf. The results are validated extensively by comparison with finite element analyses. Then, this parer also presents thrust characteristics according to design parameters for each model.

  • PDF

Rotor Loss in Permanent Magnet Brushless AC Machine (고속용 영구자석모터의 손실특성)

  • Jang, S.M.;Go, J.W.;Yoon, I.K.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.68-70
    • /
    • 2002
  • Important category of brushless ac machine design is emerging in which the fundamental component of the stator MMF has fewer poles than the rotor. the torque being developed by a higher order MMF harmonic. The fundamental and lower order MMF harmonics can then give rise to significant rotor eddy currents. An analytical model is developed to predict rotor-induced eddy currents in such machines, and to quantify the effectiveness of circumferentially segmenting the permanent magnets in reducing the rotor loss.

  • PDF

The Stator Design of BLDC for reducing the Cogging Torque (BLDC 전동기의 코깅토크 저감을 위한 고정자 설계)

  • Ryu, D.I.;Lim, S.B.;Kim, K.C.;Won, S.H.;Lee, J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.767-768
    • /
    • 2006
  • Cogging torque is produced in a permanent magnet machine by the magnetic attraction between the rotor-mounted permanent magnets and the stator. It is an undesired effect that contributes to the machines' output ripple, vibration, and noise. This paper presents the stator design for reducing cogging torque in the BLDC motor by using the DOE(Design of Experiments). The cogging torque is computed by using a two-dimensional finite element analysis.

  • PDF

Harmonic Iron Analysis of Traction Motor in the High Speed Train with the Distributed Tractions (동력분산형 고속 전철용 견인전동기의 고조파 철손 해석)

  • Seo, Jang-Ho;Lim, Jae-Won;Jung, Won;Jeon, Ho-Chang;Kim, Min-Suk;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.162-168
    • /
    • 2008
  • To predict efficiency of Interior Permanent Magnet Synchronous Motors(IPMSM) and to cope with the demagnetization risk of permanent magnets used in the IPMSM, accurate iron analysis of the IPMSM is very important at the motor design stage. In the analysis, we developed a new iron loss model of electrical machines for high-speed operation. The calculated iron loss was compared with the experimental data. It was clarified that the proposed method can estimate iron loss effectively at high-speed operation.

  • PDF

Comparison of Two Rotor Configurations by Changing the Amount of Magnet and Reluctance Components

  • Beser, Esra Kandemir;Camur, Sabri;Arifoglu, Birol;Beser, Ersoy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.155-164
    • /
    • 2015
  • In this paper, two rotor configurations including different amount of magnet and reluctance parts are presented. The rotors are constituted by means of a flexible hybrid motor structure. Considerable features of the hybrid structure are that the combination of the magnet and reluctance parts can be suitably modified and the mechanical angle (${\beta}$) between the parts can also be varied. Two hybrid rotor configurations have been considered in this study. First, finite element (FE) simulations were carried out and the torque behaviors of the motors were predicted. The average torque ($T_{avg}$) and maximum torque ($T_{max}$) curves were obtained from FE simulations in order to find suitable ${\beta}$. Mathematical model of the motors was formed in terms of a,b,c variables considering the amount of the magnet and reluctance parts on the rotor and simulations were performed. Rotor prototypes, motor drive and drive method were introduced. Torque profiles of the motors were obtained by static torque measurement and loaded tests were also realized. Thus, simulation results were verified by experimental study. There is a good match between predictions and measurements. The proposed motors are operated with electrical $120^{\circ}$ mode as a brushless DC motor (BLDC) and torque versus speed characteristics show a compound DC motor characteristic. The motors can be named as brushless DC compound motors.