• Title/Summary/Keyword: permanent displacement

Search Result 195, Processing Time 0.039 seconds

A Parameter Study on the Frequency Characteristics Control of Implantable Bone Conduction Transducer Using FEA (FEA를 이용한 이식형 골전도 진동체의 주파수 특성 제어에 관한 파라미터 연구)

  • Shin, Dong Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1040-1048
    • /
    • 2020
  • In this study, in order to improve the implantable bone conduction transducer of the prototype proposed by Shin et al., the effect of the element parameters of the transducer on the frequency characteristics was analyzed using electromagnetic and mechanical vibration analysis. Electromagnetic analysis was performed on the size of the permanent magnet and the distance between the metal plate and the coil to derive an optimal structure that generates the maximum Lorentz force. In addition, mechanical vibration analysis was performed on the cantilever structure of the vibrational membrane in order to minimize the distortion of the transducer and to have a frequency characteristic suitable for conductive hearing loss compensation. The frequency characteristics of the transducer of the optimal structure derived through finite element method were compared with the simulation results of the previous transducer. As a result, the output magnitude (displacement) of the transducer designed with the optimal structure generated an average 8.8 times higher than the previous transducer, and the resonance frequency was generated at 0.9 kHz.

A Study on the Behavior Characteristics of a New-Type FRP-Concrete Composite Deck (신개념 FRP-콘크리트 합성 바닥판의 거동 특성 고찰)

  • Cho Keunhee;Chin Won Jong;Kim Sung Tae;Cho Jeong-Rae;Kim Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.746-749
    • /
    • 2004
  • A new-type of FRP-concrete composite bridge deck system is proposed and its behaviors are experimentally studied. The new-typedeck consists of FRP as a permanent form and main tension resisting member and concrete as a compression resisting member. A suitable bonding method such as silica coating is applied to the interface between FRP and concrete to ensure composite behavior. The proposed deck system uses the box-shape FRP member, while a typical FRP-concrete composite deck uses the I-shape FRP member. Theproposed deck system has inherent advantages of a FRP-concrete composite deck like corrosion free and easy construction. The new-type deck shows the equal performances compared to a previous one, and has the advantage of reducing self-weight. In this study, the static tests on 3-span FRP-concrete decks in full scale are carried out, so that load-displacement relation, stress distribution, failure mode and design criteria are analyzed. The test results show that the deflection design criterion (L/800, L: span length) is satisfied at the service load state. No concrete tensile crack occurs in the negative moment region above the main girder, regardless of no tensile reinforcement at upper concrete portion.

  • PDF

Towards robust viscoelastic-plastic-damage material model with different hardenings/softenings capable of representing salient phenomena in seismic loading applications

  • Jehel, Pierre;Davenne, Luc;Ibrahimbegovic, Adnan;Leger, Pierre
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.365-386
    • /
    • 2010
  • This paper presents the physical formulation of a 1D material model suitable for seismic applications. It is written within the framework of thermodynamics with internal variables that is, especially, very efficient for the phenomenological representation of material behaviors at macroscale: those of the representative elementary volume. The model can reproduce the main characteristics observed for concrete, that is nonsymetric loading rate-dependent (viscoelasticity) behavior with appearance of permanent deformations and local hysteresis (continuum plasticity), stiffness degradation (continuum damage), cracking due to displacement localization (discrete plasticity or damage). The parameters have a clear physical meaning and can thus be easily identified. Although this point is not detailed in the paper, this material model is developed to be implemented in a finite element computer program. Therefore, for the benefit of the robustness of the numerical implementation, (i) linear state equations (no local iteration required) are defined whenever possible and (ii) the conditions in which the presented model can enter the generalized standard materials class - whose elements benefit from good global and local stability properties - are clearly established. To illustrate the capabilities of this model - among them for Earthquake Engineering applications - results of some numerical applications are presented.

Experimental nonlinear vibrations of an MRE sandwich plate

  • Zhang, Jiawei;Yildirim, Tanju;Alici, Gursel;Zhang, Shiwu;Li, Weihua
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2018
  • The nonlinear vibration analysis of a magneto-rheological elastomer (MRE) sandwich plate is conducted experimentally. Experiments have been performed in order to construct the frequency-response curves in the vicinity of the fundamental natural frequency of an MRE sandwich plate (plate A) in either the absence or presence of a localised external magnetic field at 3 different geometrical locations, for both small and medium magnetic fields. Furthermore, experiments have also been conducted on a pure aluminium plate (plate B) with an equal thickness to the MRE sandwich plate (plate A) in order to examine the influence of the MRE layer on the nonlinear dynamics of the system. An electrodynamic shaker was used to directly force each system and the displacement at the centre of the plate was measured. Meanwhile, permanent magnets were used to apply a localised magnetic field for the experiments where the MRE sandwich plate was subject to an external magnetic field. It was observed all the MRE systems displayed strong hardening-type nonlinear behaviour, however, with increasing magnetic field this behaviour transitioned to a weak hardening-type nonlinearity.

An active back-flow flap for a helicopter rotor blade

  • Opitz, Steffen;Kaufmann, Kurt;Gardner, Anthony
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.69-91
    • /
    • 2014
  • Numerical investigations are presented, which show that a back-flow flap can improve the dynamic stall characteristics of oscillating airfoils. The flap was able to weaken the stall vortex and therefore to reduce the peak in the pitching moment. This paper gives a brief insight into the method of function of a back-flow flap. Initial wind tunnel experiments were performed to define the structural requirements for a detailed experimental wind tunnel characterization. A structural integration concept and two different actuation mechanisms of a back-flow flap for a helicopter rotor blade are presented. First a piezoelectric actuation system was investigated, but the analytical model to estimate the performance showed that the displacement generated is too low to enable reliable operation. The seond actuation mechanism is based on magnetic forces to generate an impulse that initiates the opening of the flap. A concept based on two permanent magnets is further detailed and characterized, and this mechanism is shown to generate sufficient impulse for reliable operation in the wind tunnel.

Experimental Study for Optimizing the Acceleration of AC Servomotor Using Finite Jerk

  • Chung, Won-Jee;Kim, Sung-Hyun;Hwan, Park-Myung;Su, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.604-609
    • /
    • 2005
  • This paper presents an experimental study for optimizing the acceleration of AC servomotor using finite jerk (the first derivative of acceleration). The acceleration optimization with finite jerk aims at generating the smooth velocity profile of AC servomotor by experimentally minimizing vibration resulted from the initial friction of servomotor. The stick-slip motion of AC servomotor induced by initial friction can result in the positional errors that are not good for high-precision devices such as the assembly robot arms to be used in a 300mm wafer or a LCD (Liquid Crystal Display) stocker system. In this paper, experiments were made by using a PM (Permanent Magnet) type AC servomotor with MMC(R) (Multi Motion Controller) programmed in Visual C++(R). The experiments have been performed for finding the optimal duration time of finite jerk in terms of the minimization of vibration displacements when both the magnitude of velocity and the allowable acceleration are given. We have compared the proposed control with the conventional control with trapezoidal velocity profile by measuring vibration displacements. The effectiveness of the proposed control has been verified in that the experimental results showed the decrease of vibration displacement by about 24%.

  • PDF

Proof-of-Concept of Magnetic Wheel-Based Magnetostrictive Energy Harvester (자석바퀴기반 자기변형 에너지하베스터의 개념증명)

  • Shin, Bong-Hi;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.483-490
    • /
    • 2015
  • This paper presents a proof-of-concept of a wheel-based magnetostrictive energy harvester (EH), which is a vibration-based EH. Coil-wound Galfenol cantilevers with two permanent magnets (PMs) act EH, while rotating wheels provide a forced vibration to EH. Four different cantilevers are designed and simulated for various end deflection. As expected from the simulation, the cantilever end deflection with triple cavity is the most. Three experiments are conducted to characterize the EH: the first with a magnetostrictive actuator, the second with a motor-driven wheel, and the third with the dummy weights. From the first experiment, the power reaches about 50 mV due to the relatively small displacement of the magnetostrictive actuator. From the second experiment, the power reaches about 120 mW. The power from the Galfenol cantilever is estimated to be about 60% of the total power from the wheel-based magnetostrictive EH.

Orbital wall restoring surgery with primary orbital wall fragments in blowout fracture

  • Kang, Dong Hee
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Most orbital surgeons believe that it's difficult to restore the primary orbital wall to its previous position and that the orbital wall is so thin that cannot be firmly its primary position. Therefore, orbital wall fractures generally have been reconstructed by replacing the bony defect with a synthetic implant. Although synthetic implants have sufficient strength to maintain their shape and position in the orbital cavity, replacement surgery has some drawbacks due to the residual permanent implants. In previous studies, the author has reported an orbital wall restoring technique in which the primary orbital wall fragment was restored to its prior position through a combination of the transorbital and transantral approaches. Simple straight and curved elevators were introduced transnasally to restore the orbital wall and to maintain temporary extraorbital support in the maxillary and ethmoid sinus. A transconjunctival approach provided sufficient space for implant insertion, while the transnasal approach enabled restoration of the herniated soft tissue back into the orbit. Fracture defect was reduced by restoring the primary orbital wall fragment to its primary position, making it possible to use relatively small size implant, furthermore, extraorbital support from both sinuses decreased the incidence of implant displacement. The author could recreate a natural shape of the orbit with the patient's own orbital bone fragments with this dual approach and effectively restored the orbital volume and shape. This procedure has the advantages for retrieving the orbital contents and restoring the primary orbital wall to its prior position.

Development of Weakly Nonlinear Wave Model and Its Numerical Simulation (약비선형 파랑 모형의 수립 및 수치모의)

  • 이정렬;박찬성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-189
    • /
    • 2000
  • A weakly nonlinear mild-slope equation has been derived directly from the continuity equation with the aid of the Galerkin's method. The equation is combined with the momentum equations defined at the mean water level. A single component model has also been obtained in terms of the surface displacement. The linearized form is completely identical with the time-dependent mild-slope equation proposed by Smith and Sprinks(1975). For the verification purposes of the present nonlinear model, the degenerate forms were compared with Airy(1845)'s non-dispersive nonlinear wave equation, classical Boussinesq equation, andsecond¬order permanent Stokes waves. In this study, the present nonlinear wave equations are discretized by the approximate factorization techniques so that a tridiagonal matrix solver is used for each direction. Through the comparison with physical experiments, nonlinear wave model capacity was examined and the overall agreement was obtained.

  • PDF

Monitoring about Crustal Deformation by Earthquake in the East of Japan (일본 동부지역 지진에 따른 지각변동 모니터링)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2390-2395
    • /
    • 2012
  • Monitoring of crustal movement by earthquake is an important line of study in geophysics and geodesy. In this Study, before and after the earthquake data about nine IGS permanent stations were processed by Precise Positioning System to analysis the influence area about Japanese earthquake in March 11 at 2:46pm. As the result of crustal deformation monitoring, the quantitative earthquake displacement and change of crustal movement was presented. Crustal movement monitoring using continuous GPS data processing is necessary for crustal research and predicting earthquake because crustal movement assumed a new aspect before and after the earthquake in Japan.