• Title/Summary/Keyword: periodontal tissue regeneration

Search Result 374, Processing Time 0.031 seconds

Periodontal tissue reaction to customized nano-hydroxyapatite block scaffold in one-wall intrabony defect: a histologic study in dogs

  • Lee, Jung-Seok;Park, Weon-Yeong;Cha, Jae-Kook;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.2
    • /
    • pp.50-58
    • /
    • 2012
  • Purpose: This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. Methods: A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral $4{\times}{\times}4{\times}5$ mm (buccolingual width${\times}$mesiodistal width${\times}$depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Results: Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. Conclusions: In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation.

The influence of diabetes mellitus on periodontal tissues: a pilot study

  • Um, Yoo-Jung;Jung, Ui-Won;Kim, Chang-Sung;Bak, Eun-Jung;Cha, Jeong-Heon;Yoo, Yun-Jung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.2
    • /
    • pp.49-55
    • /
    • 2010
  • Purpose: The purpose of this study was to preliminarily evaluate the influence of diabetes mellitus (DM) on periodontal tissue without establishment of periodontitis. Methods: Seven-week-old db/db mice were used for the diabetic experimental group and systematically healthy mice of the same age were used as controls. After 1 week of acclimatization, the animals were sacrificed for hard and soft tissue evaluation. The pattern of bone destruction was evaluated by stereomicroscope evaluation with alizarin red staining and radiographic evaluation by microscopic computerized tomography images. Histological evaluation was performed with hematoxylin and eosin stain for evaluation of soft tissue changes. Results: In both stereomicroscope evaluation and radiograph image analysis, aggressive form of bone destruction was observed in diabetic animals when compared to the systematically healthy controls. In histological evaluation, apical migration of junctional epithelium with slight inflammatory cell infiltration was observed with disarrangement of connective tissue fibers. Conclusions: Within the limits of this study, diabetic animals presented distortion in periodontal attachment and an aggressive bone loss pattern when compared to the healthy controls, suggesting that DM has an independent effect on periodontal tissue destruction irrespective of the presence or absence of periodontal disease.

Effect of seeding using an avidin-biotin binding system on the attachment of periodontal ligament fibroblasts to nanohydroxyapatite scaffolds: three-dimensional culture

  • Jang, Yong-Ju;Jung, Im-Hee;Park, Jung-Chul;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Keun;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • Purpose: For periodontal tissue engineering, it is a primary requisite and a challenge to select the optimum types of cells, properties of scaffold, and growth factor combination to reconstruct a specific tissue in its natural form and with the appropriate function. Owing to fundamental disadvantages associated with using a two-dimensional substrate, several methods of seeding cells into three-dimensional scaffolds have been reported and the authors have asserted its usefulness and effectiveness. In this study, we explore the cell attachment of periodontal ligament fibroblasts on nanohydroxyapatite (n-HA) scaffold using avidin biotin binding system (ABBS). Methods: Human periodontal ligament fibroblasts were isolated from the health tooth extracted for the purpose of orthodontic procedure. HA nanoparticles were prepared and $Ca(NO_3)_2-_4H_2O$ and $(OC_2H_5)_3P$ were selected as precursors of HA sol. The final scaffold was 8 mm in diameter and 3 mm in height disk with porosity value of 81.55%. $1{\times}10^5$ periodontal ligament fibroblasts were applied to each scaffold. The cells were seeded into scaffolds by static, agitating and ABBS seeding method. Results: The number of periodontal ligament fibroblasts attached was greater for ABBS seeding method than for static or agitating method (P<0.05). No meaningful difference has been observed among seeding methods with scanning electron microscopy images. However, increased strength of cell attachment of ABBS could be deduced from the high affinity between avidin and biotin ($Kd=10^{-15}\;M$). Conclusions: The high-affinity ABBS enhances the ability of periodontal ligament fibroblasts to attach to three-dimensionally constructed n-HA scaffold.

Tissue integration patterns of non-crosslinked and crosslinked collagen membranes: an experimental in vivo study

  • Xiang Jin;Jin-Young Park;Jung-Seok Lee;Ui-Won Jung;Seong-Ho Choi;Jae-Kook Cha
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.207-217
    • /
    • 2023
  • Purpose: Non-crosslinked and crosslinked collagen membranes are known to exhibit distinct degradation characteristics, resulting in contrasting orientations of the adjacent tissues and different biological processes. The aim of this study was to conduct a histomorphometric assessment of non-crosslinked and crosslinked collagen membranes regarding neovascularization, tissue integration, tissue encapsulation, and biodegradation. Methods: Guided bone regeneration was performed using either a non-crosslinked (BG) or a crosslinked collagen membrane (CM) in 15 beagle dogs, which were euthanized at 4, 8, and 16 weeks (n=5 each) for histomorphometric analysis. The samples were assessed regarding neovascularization, tissue integration, encapsulation, the remaining membrane area, and pseudoperiosteum formation. The BG and CM groups were compared at different time periods using nonparametric statistical methods. Results: The remaining membrane area of CM was significantly greater than that of BG at 16 weeks; however, there were no significant differences at 4 and 8 weeks. Conversely, the neovascularization score for CM was significantly less than that for BG at 16 weeks. BG exhibited significantly greater tissue integration and encapsulation scores than CM at all time periods, apart from encapsulation at 16 weeks. Pseudoperiosteum formation was observed in the BG group at 16 weeks. Conclusions: Although BG membranes were more rapidly biodegraded than CM membranes, they were gradually replaced by connective tissue with complete integration and maturation of the surrounding tissues to form dense periosteum-like connective tissue. Further studies need to be performed to validate the barrier effect of the pseudoperiosteum.

The long-term study on the guided tissue regeneration with poly(${\alpha}-hydroxy\;acid$} membranes in beagle dogs (Poly(alpha-hydroxy acids) 제제 생분해성 차폐막의 치주조직 재생유도능력에 관한 조직학적 장기관찰)

  • Rhyu, In-Chul;Ku, Young;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.3
    • /
    • pp.633-645
    • /
    • 1997
  • The recent trend of research and development on guided tissue regeneration focuses on the biodegradable membranes, which eliminate the need for subsequent surgical removal. They have demonstrated significant and equivalent clinical improvements to the ePTFE membranes. This study evaluate guided tissue regeneration wound healing in surgically induced intrabony periodontal defects following surgical treatment with a synthetic biodegradable membranes, made from a copolymer of glycolide and lactide, in 8 beagle dogs. After full thickeness flap reflection, exposed buccal bone of maxillary and mandibular canine and premolar was removed surgically mesiodistally and occlusoapically at $6mm{\times}6mm$ in size for preparation of periodontal defects. In experimental sites a customized barrier was formed and fitted to cover the defect. Flap was replaced slightly coronal to CEJ and sutured. Plaque control program was initiated and maintained until completion of the study. In 4, 8, 16 and 24 weeks after surgery, the animals were sacrificed and then undecalcified specimens were prepared for histologic evaluation. Histologic examination indicated significant periodontal regeneration characterized by new connective tissue attachment, cementum formation and bone formation. These membranes showed good biocompatibility throughout experiodontal period. The barriers had been completely resorbed with no apparent adverse effect on periodontal wound healing at 24 weeks. These results implicated that present synthetic biodegradable membrane facilitated guided tissue regeneration in periodontal defect.

  • PDF

THE IMMUNOCYTOCHEMICAL STUDY OF THE PRECURSOR CELLS IN THE PERIODONTAL REGENERATION OF HORIZONTAL FURCATION DEFECT. (치근이개부 수평결손시 조직재생에 관여하는 전구세포의 면역세포화학적 연구)

  • Herr, Yeek;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.438-457
    • /
    • 1995
  • The origin of fibroblasts, their proliferative activity and roles in the early stages of periodontal regeneration were investigated in order to better understand the periodontal healing process in furcation defects of the beagle dog after guided tissue regeneration. Newly divided cells were identified and quantitated by immunolocalization of bromodeoxyuridine (BrdU) injected 1 hour prior to sacrificing the animals. The results were as follows :1. During periodontal healing in horizontal furcation defect, three different stages, namely the granulation tissue, connective tissue, and bone formation stages, were identified on the basis of major types of cells and tissue. 2. In the early stages of periodontal regeneration, both the remaining periodontal ligament and alveolar bone compartment were the major sources. 3. The majority of BrdU-labeled fibroblasts were located at the following areas ; 1) the coronal zone of the defect in case of the connective tissue fanned on the root surface. 2) the area within an 400 ${\mu}m$ distance from the remaining bone level in case of the periodontal ligament. 3) the area within an 100 ${\mu}m$ distance from the bone surface in case of areas of active bone formation.4. The highly proliferative fibroblasts adjacent to bone surface played a major role in the formation of osteoblast precursor cells, whereas both paravascular and endosteal cells played a minor role in new bone formation, In conclusion, it was suggested that the fibroblasts in the remaining periodontal ligament and bone will play a major role in periodontal regeneration, whereas both paravascular and endosteal cells will play a minor role in new bone formation.

  • PDF

Understanding of Cementum Formation by the Wnt/β-Catenin Signaling (Wnt/β-Catenin 신호조절에 의한 백악질 형성의 이해)

  • You, Young-Jae;Yang, Jin-Young
    • Journal of dental hygiene science
    • /
    • v.16 no.6
    • /
    • pp.401-408
    • /
    • 2016
  • Periodontal disease is one of the major dental diseases. Currently, various methods are used for healing and successful regeneration of periodontal tissue damaged by periodontal disease. The periodontal ligament and alveolar bone have received considerable interest for use in periodontal tissue regeneration and induction. However, as the functions of the factors required for tooth attachment and key regulatory factors for periodontal tissue regeneration in the cementum have recently been identified, interest in cementum formation and regeneration has increased. Dental cementum forms in the late phase of tooth development because of the reciprocal regulatory interaction between cervical loop epithelial cells and surrounding mesenchymal cells, which is regulated by various gene signaling networks. Many attempts have been made to understand the regulatory factors and cellular and molecular mechanisms associated with new cementum formation. In this paper, we reviewed the study outcomes to date on the regulatory factors that induce cementum formation and regeneration, focusing on understanding the roles and functions of Wnt signaling in the regulation of cementum formation. In addition, we aimed to obtain information on the useful reciprocal regulatory factors that mediate cementum formation and regeneration through a series of molecular mechanisms.

AN IMMUNOHISTOCHEMICAL STUDY OF THE DISTRIBUTION OF FIBRONECTIN, LAMININ AND TENASCIN IN THE REGENERATING PERIODONTAL TISSUE (재생중인 치주조직내 Fibronectin, Laminin 및 Tensacin의 분포에 관한 면역조직화학적 연구)

  • Chung, Gap-Hwan;Kim, Byung-Ok;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.321-340
    • /
    • 1995
  • The regeneration of destructed periodontal tissues is one of the ultimate objectives of periodontal therapy. Guided tissue regeneration technique was developed for the ideal regeneration of periodontal tissues. In order to investigate the role of fibronectin, laminin and tenascin in the regenerating process of periodontal tissues, the expanded PTFE barrier membranes(Gore Associates, USA) removed from the patients who had been treated by guided tissue regeneration(GTR) and guided bone regeneration(GBR) techniques were fixed in neutral formalin for 6-24 hours, embedded with paraffin, sectioned at $4-6{\mu}m$ in thickness, and immunohistochemically processed by Avidin-Biotin peroxidase complex method for detecting fibronectin, laminin and tenascin. Monoclonal mouse anti-human fibronectin antibody(Oncogene Science, USA., 1:100), monoclonal mouse anti-human laminin antibody(Oncogene Science, USA., 1:50) and mouse anti-human tenascin antibody(Oncogene Science, USA, 1:10) were used as primary antibodies. The light microscopic findings were as follows: (1) The distribution of fibronectin, laminin and tenascin was various according to the area of barrier membranes. (2) The distribution of fibronectin in case of GBR was extensive in the tissue on the outer surface of barrier membranes, and rare in the intervening space and on the inner surface. In case of GTR it was extensive on the outer surface and in the intervening space, and rare on the inner surface. (3) The distribution of laminin was rare in the tissue on the outer, the inner surface and intervening space of barrier membranes, regardless of GBR or GTR. (4) In case 'of GBR rare distribution of tenascin was observed on the outer surface only, except the inner surface and the intervening space of barrier membranes. In case of GTR the distribution of tenascin was extensive in the tissue on the outer surface, rare in intervening space and the inner surface. The results suggest that fibronectin, laminin and tenascin may play a important role in the regenerating process of periodontal tissue, and they may affect the outcome of healing.

  • PDF

Pain Control Effects of $Myprodol^{(R)}$ after Periodontal Surgery and Dental Implant Surgery (치주 수술 및 인공 치아 매식술 후 $Myprodol^{(R)}$의 동통 억제 효과에 대한 연구)

  • Cho, Kyoo-Sung;Lee, Jung-Hoon;Kim, Hyun-Young;Suh, Jong-Gin;Choi, Seong-Ho;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • Although various analgesics have been administrated for postoperative pain control, postoperative pain has not been adequately controlled . The purpose of this study was to evaluate the effects and patient's satisfaction of $Myprodol^{(R)}$(combination analgesics with codeine, ibuprofen, paracetamol) compared to Acetamionphen and placebo drug after periodontal surgery and dental implant surgery. We studied 98 cases of outpatients which were composed of 67 cases of flap operation(which separated to 3 groups: Placebo group(n=25), $Myprodol^{(R)}$ group(n=22), Acetaminophen group(n=20)) and 21 cases of dental implant surgery(which separated to 3 groups : Placebo group(n=10), $Myprodol^{(R)}$ group(n=12), Acetaminophen group(n=9)). We evaluated the postoperative pain(Pain 1), Pain after first drug administraion(Pain 2), the degrees of pain reduction(pain 3), patient's satisfaction for drug, and side-effects. We obtained following results; 1. In Pain 1, making a comparison among groups, there was no significant difference in both cases of flap operation-group and dental implant surgery-group 2. In Pain 2, establishing a comparison among groups, there was no significant difference in flap operation-group, but significant difference was seen between placebo group and $Myprodol^{(R)}$ group in cases of dental implant surgery group(P<0.05). 3. In Pain 3, making a comparison among groups, $Myprodol^{(R)}$ group showed significant differences compared to placebo group and Acetaminophen group in both cases of flap operation group and dental implant surgery group(P<0.05). 4. In patient's satisfactory score, making a comparison among groups, there were significant differences between placebo group and $Myprodol^{(R)}$ group in cases of flap operation group and between $Myprodol^{(R)}$ group and Acetaminophen group in cases of dental implant surgery group(P<0.05). 5. Making a comparison in side-dffect, no significant differrence was seen. Our conclusion is that $Myprodol^{(R)}$ is a effective oral analgesics to the patients who underwent periodontal surgery or implant surgery for it's synergism among three dugs.

  • PDF