• Title/Summary/Keyword: periodic solutions

Search Result 318, Processing Time 0.023 seconds

SINGULAR PERIODIC SOLUTIONS OF A CLASS OF ELASTODYNAMICS EQUATIONS

  • Yuan, Xuegang;Zhang, Yabo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.501-515
    • /
    • 2009
  • A second order nonlinear ordinary differential equation is obtained by solving the initial-boundary value problem of a class of elas-todynamics equations, which models the radially symmetric motion of a incompressible hyper-elastic solid sphere under a suddenly applied surface tensile load. Some new conclusions are presented. All existence conditions of nonzero solutions of the ordinary differential equation, which describes cavity formation and motion in the interior of the sphere, are presented. It is proved that the differential equation has singular periodic solutions only when the surface tensile load exceeds a critical value, in this case, a cavity would form in the interior of the sphere and the motion of the cavity with time would present a class of singular periodic oscillations, otherwise, the sphere remains a solid one. To better understand the results obtained in this paper, the modified Varga material is considered simultaneously as an example, and numerical simulations are given.

  • PDF

VARIATIONAL APPROACH AND THE NUMBER OF THE NONTRIVIAL PERIODIC SOLUTIONS FOR A CLASS OF THE SYSTEM OF THE NONTRIVIAL SUSPENSION BRIDGE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.199-212
    • /
    • 2009
  • We investigate the multiplicity of the nontrivial periodic solutions for a class of the system of the nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition. We show that the system has at least two nontrivial periodic solutions by the abstract version of the critical point theory on the manifold with boundary. We investigate the geometry of the sublevel sets of the corresponding functional of the system and the topology of the sublevel sets. Since the functional is strongly indefinite, we use the notion of the suitable version of the Palais-Smale condition.

  • PDF

Accurate periodic solution for nonlinear vibration of thick circular sector slab

  • Pakar, Iman;Bayat, Mahmoud;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.521-531
    • /
    • 2014
  • In this paper we consider a periodic solution for nonlinear free vibration of conservative systems for thick circular sector slabs. In Energy Balance Method (EBM) contrary to the conventional methods, only one iteration leads to high accuracy of the solutions. The excellent agreement of the approximate frequencies and periodic solutions with the exact ones could be established. Some patterns are given to illustrate the effectiveness and convenience of the methodology. Comparing with numerical solutions shows that the energy balance method can converge to the numerical solutions very rapidly which are valid for a wide range of vibration amplitudes as indicated in this paper.

Periodic solutions of the Duffing equation

  • Tezcan, Jale;Hsiao, J. Kent
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.593-602
    • /
    • 2008
  • This paper presents a new linearization algorithm to find the periodic solutions of the Duffing equation, under harmonic loads. Since the Duffing equation models a single degree of freedom system with a cubic nonlinear term in the restoring force, finding its periodic solutions using classical harmonic balance (HB) approach requires numerical integration. The algorithm developed in this paper replaces the integrals appearing in the classical HB method with triangular matrices that are evaluated algebraically. The computational cost of using increased number of frequency components in the matrixbased linearization approach is much smaller than its integration-based counterpart. The algorithm is computationally efficient; it only takes a few iterations within the region of convergence. An example comparing the results of the linearization algorithm with the "exact" solutions from a 4th order Runge- Kutta method are presented. The accuracy and speed of the algorithm is compared to the classical HB method, and the limitations of the algorithm are discussed.

PERIODIC SOLUTIONS FOR DUFFING TYPE p-LAPLACIAN EQUATION WITH MULTIPLE DEVIATING ARGUMENTS

  • Jiang, Ani
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.27-34
    • /
    • 2013
  • In this paper, we consider the Duffing type p-Laplacian equation with multiple deviating arguments of the form $$({\varphi}_p(x^{\prime}(t)))^{\prime}+Cx^{\prime}(t)+go(t,x(t))+\sum_{k=1}^ngk(t,x(t-{\tau}_k(t)))=e(t)$$. By using the coincidence degree theory, we establish new results on the existence and uniqueness of periodic solutions for the above equation. Moreover, an example is given to illustrate the effectiveness of our results.

PERIODIC OSCILLATIONS OF A PARTICLE NONLINEARLY SUPPORTED FROM TWO POINTS

  • Oh, Hye-Young
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.613-625
    • /
    • 2001
  • In this paper, we investigate a simplified model of a particle suspended elastically from two towers by two nonlinear elastic springs, with a restoring force similar to Hooke’s law under extension and with no resistance to compression. Numerical results are presented, showing the solutions can be either of the same period oscillation the forcing term, can be a subharmonic response of multiple period, or can be noisy periodic which is apparently chaotic. Multiplicity of periodic solutions for certain physical parameters are demonstrated.

EXISTENCE AND EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS FOR CELLULAR NEURAL NETWORKS WITH CONTINUOUSLY DISTRIBUTED DELAYS

  • Liu Bingwen;Huang Lihong
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.445-459
    • /
    • 2006
  • In this paper cellular neural networks with continuously distributed delays are considered. Sufficient conditions for the existence and exponential stability of the almost periodic solutions are established by using fixed point theorem, Lyapunov functional method and differential inequality technique. The results of this paper are new and they complement previously known results.

EXISTENCE AND GLOBAL EXPONENTIAL STABILITY OF POSITIVE ALMOST PERIODIC SOLUTIONS FOR A DELAYED NICHOLSON'S BLOWFLIES MODEL

  • Xu, Yanli
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.473-493
    • /
    • 2014
  • This paper concerns with a class of delayed Nicholson's blowflies model with a nonlinear density-dependent mortality term. Under appropriate conditions, we establish some criteria to ensure that the solutions of this model converge globally exponentially to a positive almost periodic solution. Moreover, we give some examples and numerical simulations to illustrate our main results.