• 제목/요약/키워드: periodic excitation

검색결과 69건 처리시간 0.026초

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

Effects of a One-Way Clutch on the Nonlinear Dynamic Behavior of Spur Gear Pairs under Periodic Excitation

  • Cheon Gill-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.941-949
    • /
    • 2006
  • Nonlinear behavior analysis was used to verify whether a one-way clutch is effective for reducing the torsional vibration of a paired spur gear system under periodic excitation. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch. The one-way clutch also eliminated unsteady continuous jump phenomena over multiple solution bands, and prevented double-side contact, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of external periodic excitation and various parameter changes than a conventional gear system without a one-way clutch.

기하학적 비선형을 고려한 정현형 아치 구조물의 동적 좌굴 특성 (Dynamic Buckling Characteristics of Arch Structures Considering Geometric Nonlinearity)

  • 윤태영;김승덕
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.492-497
    • /
    • 2003
  • The dynamic instability for snapping phenomena has been studied by many researches. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal distributed excitation with pin-ends. In this study, the dynamic direct snapping of shallow arches is investigated under not only STEP load excitation but also sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

정현형 조화하중에 의한 아치 구조물의 동적 좌굴 특성에 관한 연구 (Dynamic Buckling Characteristics of Arch Structures by Sinusoidal Harmonic Excitation)

  • 윤태영;김승덕
    • 한국전산구조공학회논문집
    • /
    • 제17권1호
    • /
    • pp.67-74
    • /
    • 2004
  • 동적 불안정 좌굴현상에 관한 연구는 다소 발표되고 있으나, 주기성을 가진 하중하에서의 동적 좌굴을 다룬 연구는 그리 많지 않은 편이다. 주기성을 가진 하중하에서의 거동은 STEP 하중하에서의 거동과는 다르리라 예상된다. 본 논문에서는 동적 불안정의 기본 메커니즘을 파악하기 위하여 양단 핀으로 고정된 정현형 아치가 정현형 조화하중을 받았을 때의 얕은 아치를 대상으로 한다. Newmark- β법에 의한 수치적분을 이용하여 비선형 운동 방정식의 변위 응답을 구하고, 얻어진 비선형 변위 응답으로 FFT(Fast Fourier Transform)에 의한 연속 응답 스펙트럼을 구해 동적 불안정 특성에 관해서 분석한다.

MPE-LPC음성합성에서 Maximum- Likelihood Estimation에 의한 Multi-Pulse의 크기와 위치 추정 (Multi-Pulse Amplitude and Location Estimation by Maximum-Likelihood Estimation in MPE-LPC Speech Synthesis)

  • 이기용;최홍섭;안수길
    • 대한전자공학회논문지
    • /
    • 제26권9호
    • /
    • pp.1436-1443
    • /
    • 1989
  • In this paper, we propose a maximum-likelihood estimation(MLE) method to obtain the location and the amplitude of the pulses in MPE( multi-pulse excitation)-LPC speech synthesis using multi-pulses as excitation source. This MLE method computes the value maximizing the likelihood function with respect to unknown parameters(amplitude and position of the pulses) for the observed data sequence. Thus in the case of overlapped pulses, the method is equivalent to Ozawa's crosscorrelation method, resulting in equal amount of computation and sound quality with the cross-correlation method. We show by computer simulation: the multi-pulses obtained by MLE method are(1) pseudo-periodic in pitch in the case of voicde sound, (2) the pulses are random for unvoiced sound, (3) the pulses change from random to periodic in the interval where the original speech signal changes from unvoiced to voiced. Short time power specta of original speech and syunthesized speech obtained by using multi-pulses as excitation source are quite similar to each other at the formants.

  • PDF

순환 구조물의 진동 국부화에 미치는 강성 불균일 및 가진력 위상차의 효과 (The Effects of the Stiffness Mistuning and the Excitation Force Phase Difference on the Vibration Localization of Cyclic Structures)

  • 강민규;유홍희
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1347-1352
    • /
    • 2003
  • In periodic cyclic structures, small property irregularity of their substructured often causes significant difference in their dynamic responses, which results in unpredicted premature failures. The small irregularity and the resulting phenomenon are called the mistuning and the vibration localization, respectively. In this paper a simple coupled multi-pendulum system is employed to investigate the effects of the stiffness mistuning and the phase difference in excitation force on the vibration localization of periodic cyclic structures.

혼합여기모델을 이용한 대역 확장된 음성신호의 음질 개선 (Quality Improvement of Bandwidth Extended Speech Using Mixed Excitation Model)

  • 최무열;김형순
    • 대한음성학회지:말소리
    • /
    • 제52호
    • /
    • pp.133-144
    • /
    • 2004
  • The quality of narrowband speech can be enhanced by the bandwidth extension technology. This paper proposes a mixed excitation and an energy compensation method based on Gaussian Mixture Model (GMM). First, we employ the mixed excitation model having both periodic and aperiodic characteristics in frequency domain. We use a filter bank to extract the periodicity features from the filtered signals and model them based on GMM to estimate the mixed excitation. Second, we separate the acoustic space into the voiced and unvoiced parts of speech to compensate for the energy difference between narrowband speech and reconstructed highband, or lowband speech, more accurately. Objective and subjective evaluations show that the quality of wideband speech reconstructed by the proposed method is superior to that by the conventional bandwidth extension method.

  • PDF

혼돈 운동 제어에 관한 수치 실험 (A Numerical Experiment on the Control of Chaotic Motion)

  • 홍대근;주재만;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.154-159
    • /
    • 1997
  • In this paper, we describe the OGY method that convert the motion on a chaotic attractor to attracting time periodic motion by malting only small perturbations of a control parameter. The OGY method is illustrated by application to the control of the chaotic motion in chaotic attractor to happen at the famous Logistic map and Henon map and confirm it by making periodic motion. We apply it the chaotic motion at the behavior of the thin beam under periodic torsional base-excitation, and this chaotic motion is made the periodic motion by numerical experiment in the time evaluation on this chaotic motion. We apply the OGY method with the Jacobian matrix to control the chaotic motion to the periodic motion.

  • PDF

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

동축류 확산화염의 불안정성과 제어에 관한 실험적 연구 (An experimental study on instability and control of co-flow diffusion flames)

  • 이현호;황준영;정석호;이원남
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.153-164
    • /
    • 1997
  • Flame oscillation phenomena in a co-flow diffusion flame was experimentally studied with periodic fuel supply using a solenoid valve. The degree of excitation was controlled by changing the volume flux of fuel passing through the valve. Flame oscillation frequencies were measured utilizing a photodiode, a spectrum analyzer, video and high speed movies. Laser planar visualization was employed to study the correlation between the flame oscillation and the toroidal vortices. Observed are three regimes of flame oscillation, where the oscillation frequencies are for the multiples of excitation, the excitation itself and the flame natural oscillation. Both periods of natural oscillation and of excitation induced oscillation exist over one cycle of the excitation in the frequency multiplied regime. It is considered as an effect of balancing the influence of buoyancy driven vortex with that of excitation induced vortex near the excitation rate of 0.2. Flame shapes are become monotonous as increasing the excitation frequency to the range of over two fold of the natural oscillation. The flame oscillation can be modulated to the frequency of either multiples of excitation or excitation itself under certain conditions. This implies that the flame oscillation could be modulated to avoid the resonance frequency of the combustor, and shows the possibility of active control of the flame oscillation.