• Title/Summary/Keyword: peridotite

Search Result 43, Processing Time 0.038 seconds

REE variation of Ultramafic rocks related to the Serpentinization, the Gyeonggi Massifs in the western Korea

  • Seo, Ji-Eun;Park, Seon-Gyu;Oh, Chang-Whan;Song, Suck-Hwan
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.194-195
    • /
    • 2003
  • High-pressure amphibolite-facies rocks with serpentinized ultramafic rocks occur in the Gyeonggi Massif. Ultramafic rocks occur as lenses within Precambrian granite gneiss, which showing dominantly tectonic lines of NNE directions as well as east extensional area of the chinese collision belt between south and north China block(\ulcorner). This study regionally makes a comparative study of ultramafic rocks in the western part of the Gyeonggi Massif in Korea. (omitted)

  • PDF

Original Rocks of the Talc Ore Deposits and their Steatitization in the Yesan Area, Choongnam, Korea (충남 예산지구 활석광상의 기원암과 활석화작용)

  • Woo, Young-Kyun;Lee, Dong-Woo
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.548-557
    • /
    • 2001
  • Ultramafic rocks in the Yesan talc ore deposits area are unknown age plutonic rocks which intruded PreCambrian Yoogoo gneiss, and were intruded by Jurassic biotite granite, and Cretaceous acidic and mafic dykes. The ultramafic rocks consist mainly of serpentinite with some amphibolite and talc ore body. The serpentinites are divided 5 rock types (S1${\sim}$S5) on the basis of the developed degree of serpentine phenocrysts and layerings. It seems that the original rocks of the serpentinites were co-magmatic peridotites (dunite and pyroxene peridotite). Main serpentinization from the original rocks was occurred during amphibolite facies regional metamorphism in Choongnam area which Yoogoo gneiss was affected. Main steatitization from the serpentinites was hydrothermal alteration by ascended hydrothermal fluid through crush zones.

  • PDF

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암에 포획된 페리도타이트의 암석학적/지화학적 특성)

  • Kim, Eunju;Park, Geunyeong;Kim, Sunwoong;Kil, Youngwoo;Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.311-325
    • /
    • 2017
  • Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).

Genesis of Talc Ore Deposits in the Yesan Area of Chungnam, Korea (충남(忠南) 예산지구(禮山地區) 활석광상(滑石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Woo, Young-Kyun;Choi, Suck-Won;Park, Ki-Hwa
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.363-378
    • /
    • 1991
  • Field and microscopic evidence, XRD,EPMA and chemical data suggest that parent rock of talc ore deposits of Yesan district was originated from ultramafic igneous rock. Parent rock can be divided into serpentinized dunite, serpentinized peridotite, metagabbro, amphibolite and hornblende schist. The ore deposits are highly sheared, and show many evidences of hydrothermal alteration and metamorphism at the greenschist and albite-epidote amphibolite facies. The process of steatitization is variable depending upon the composition, and the degree of alteration and metamorphism of the parent rocks. Steatitization can be divided into two processes with or without serpentinization. The parent rocks with serpentinization are serpentinized dunite, serpentinized peridotite and metagabbro, showing the following alteration process; olivine ${\rightarrow}$ serpentine${\rightarrow}$ talc. The rocks without serpentinization are amphibolite and hornblende schist showing the following sequence; hornblende${\rightarrow}$ chlorite${\rightarrow}$ talc. Formation of talc deposits is summarized as following six stages; I) Intrusion of ultramafic rocks, 2) autometamorphism, 3) metamorphism at greenschist and albite-epidote-amphibolite facies, 4) brittle deformation, 5) hydrothermal alteration, 6) purification of low-grade talc by late dyke intrusion.

  • PDF

Upper Mantle Heterogeneity Recorded by Microstructures and Fluid Inclusions from Peridotite Xenoliths Beneath the Rio Grande Rift, USA (미국 리오 그란데 리프트 페리도타이트 포획암의 미구조와 유체포유물에 기록된 상부맨틀의 불균질성)

  • Park, Munjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.273-281
    • /
    • 2022
  • Mantle heterogeneity is closely related to the distribution and circulation of volatile components in the Earth's interior, and the behavior of volatiles in the mantle strongly influences the rheological properties of silicate rocks. In mantle xenoliths, these physicochemical properties of the upper mantle can be recorded in the form of microstructures and fluid inclusions. In this paper, I summarized and reviewed the results of previous studies related to the characteristics of microstructures and fluid inclusions from peridotite xenoliths beneath the Rio Grande Rift (RGR) in order to understand the evolution and heterogeneity of upper mantle. In the RGR, the mantle peridotites are mainly reported in the rift axis (EB: Elephant Butte, KB: Kilbourne Hole) and rift flank (AD: Adam's Diggings) regions. In the case of the former (EB and KB peridotites), the type-A lattice preferred orientation (LPO), formed under low-stress and low-water content, was reported. In the case of the latter (AD peridotites), the type-C LPO, formed under low-stress and high-water content, was reported. In particular, in the case of AD peridotites, at least two fluid infiltration events, such as early (type-1: CO2-N2) and late (type-2: CO2-H2O), have been recorded in orthopyroxene. The upper mantle heterogeneity recorded by these microstructures and fluid inclusions is considered to be due to the interaction between the North American plate and the Farallon plate.

Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island (제주도 선흘리 일대에 분포하는 맨틀포획암 내의 광물의 지화학적 특성 연구)

  • Kil, Young-Woo;Shin, Hong-Ja;Yun, Sung-Hyo;Koh, Jeong-Seon;Ahn, Ung-San
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 2008
  • First reported geochemical characteristics of mantle xneoliths (spinel peridotites) from Sunheul-ri, Jeju Island, provide important clues for understanding the lithosphere composition, equilibrium temperature, and the period of entrainment and transport of the xenoliths in the host magma. Core and rim of mineral phases in the xenoliths are constant chemical compositions as $Fo_{89-90}$ of olivines. The ranges of equilibrium temperature, obtained by two pyroxenes geothermometer, are about $951{\sim}1035^{\circ}C$ for Sunheul-ri spinel peridotite xenoliths and are similar to the range of equilibrium temperatures for the xenoliths from other sites in Jeju island. The period of entrainment and transport of the xenoliths in the host magma of Sunheul-ri mantle xenoliths is about 42 days.

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.

Genesis and Mineralogy of the Serpentinite Deposits in the Andong Area, Korea (안동지역 사문암광상의 구성광물 및 성인에 관한 연구)

  • Hwang, Jin Yeon;Kim, Jeong Jin;Ock, Soo Seok
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • The Andong serpentinite body is distributed along the Andong fault, and shows an elliptical shape. The serpentinite is composed of serpentine minerals and other various minerals such as forsterite, pyroxene, talc, tremolite, chlorite, prehnite, calcite and dolomite. The serpentine minerals consist primarily of lizardite with minor chrysotile. Antigorite rarely occurs in some veins. The serpentinite is largely divided into two alteration zones by the occurrence and mineral assemblages. One of the alteration zones is composed of a large amount of serpentine minerals. The other is characterized by tremolite and chlorite. The alteration zone composed of tremolite and chlorite seems to have been formed by hydrothermal alteration after the formation of serpentinite. It is considered that the serpentinite have been formed by alteration of the ultramafic rock such as peridotite.

  • PDF

Detrital Mineral Chemistry of Jurassic Sandstone from the Mino Terrane in Southwest Japan

  • Young Ji Joo;Yong Il Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.307-317
    • /
    • 2023
  • We investigate the provenance of detrital garnets in Middle-Upper Jurassic sandstone of the Mino terrane, an accretionary complex in Southwest Japan, based on their chemical composition. The garnet grains in the Mino sandstone are mostly Fe-rich (almandine) and slightly Mg-rich (pyrope) species derived from high-grade metamorphic and intermediate to acidic plutonic rocks. The composition and interpreted origin of the garnets are generally consistent with those of metamorphic and igneous rocks of the Yeongnam Massif on the Korean Peninsula, a possible source region suggested in previous studies. In addition, two single grains of chromian spinel, an accessory mineral found in mafic to ultramafic rocks such as mantle peridotite, were found in one of the Mino sandstone samples. This finding suggests the possible presence of mafic to ultramafic rocks in the source area. The results of this study provide complimentary evidence for establishing a comprehensive tectonic and paleogeographical framework for the Mesozoic East Asian continent.