• Title/Summary/Keyword: performance-based-plastic design

Search Result 179, Processing Time 0.022 seconds

Restoration of pre-damaged RC bridge columns using basalt FRP composites

  • Fahmy, Mohamed F.M.;Wu, Zhishen
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2018
  • This study aims to identify the effect of both longitudinal reinforcement details and damage level on making a decision of repairing pre-damaged bridge columns using basalt fiber reinforced polymer (BFRP) jackets. Two RC bridge columns with improper details of the longitudinal and/or transverse reinforcement were tested under the effect of a constant axial load and increasing lateral cyclic loading. Test results showed that the lap-splice column exhibited an inferior performance where it showed rapid degradation of strength before achieving the theoretical strength and its deformation capacity was limited; however, quick restoration is possible through a suitable rehabilitation technique. On the other hand, expensive repair or even complete replacement could be the decision for the column with the confinement failure mode. After that, a rehabilitation technique using external BFRP jacket was adopted. Performance-based design details guaranteeing the enhancement in the inelastic performance of both damaged columns were addressed and defined. Test results of the repaired columns confirmed that both reparability and the required repairing time of damage structures are dependent on the reinforcement details at the plastic hinge zone. Furthermore, lap-splice of longitudinal reinforcement could be applied as a key design-tool controlling reparability and restorability of RC structures after massive actions.

Elasto-plastic time history analysis of an asymmetrical twin-tower rigid-connected structure

  • Wu, Xiaohan;Sun, Yanfei;Rui, Mingzhuo;Yan, Min;Li, Lishu;Liu, Dongze
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.211-228
    • /
    • 2013
  • The structure analyzed in this paper has particular building style and special structural system. It is a rigid-connected twin-tower skyscraper with asymmetrical distribution of stiffness and masses in two towers. Because of the different stiffness between the north and the south towers, the torsion seismic vibration is significant. In this paper, in order to study the seismic response of the structure under both frequent low-intensity earthquakes as well as rare earthquakes at the levels of intensity 7, the analysis model is built and analyzed with NosaCAD. NosaCAD is an nonlinear structure analysis software based on second-development of AutoCAD with ObjectARX. It has convenient modeling function, high computational efficiency and diversity post-processing functions. The deformations, forces and damages of the structure are investigated based on the analysis. According to the analysis, there is no damage on the structure under frequent earthquakes, and the structure has sufficient capacity and ductility to resist rare earthquakes. Therefore the structure can reach the goal of no damage under frequent earthquakes and no collapse under rare earthquakes. The deformation of the structure is below the limit in Chinese code. The time sequence and distribution of damages on tubes are reasonable, which can dissipate some dynamic energy. At last, according to forces, load-carrying capacity and damage of elements, there are some suggestions on increasing the reinforcement in the core tube at base and in stiffened stories.

Study on Factors Affecting on Energy Dissipation Coefficient of Reinforced Concrete Wall with Deformation-Dominated Behavior (변형지배거동을 하는 철근콘크리트 벽체의 에너지소산계수에 영향을 미치는 변수에 관한 연구)

  • Suk-Hyeong Yoo;Dae-Young Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.38-46
    • /
    • 2024
  • In Korea, more than 60% of the population lives in apartment buildings with wall structures that exhibit brittle behavior during earthquakes. Therefore, in recent performance-based seismic design, the selection of the energy dissipation coefficient for reinforced concrete (RC) walls in nonlinear dynamic analysis is very important. Previous experimental studies have reported that the main factors affecting the energy dissipation capacity of RC walls are the axial force ratio, the spacing of transverse reinforcement of boundary element, and the aspect ratio. The Architectural Institute of Korea and the Korea Concrete Institute proposed a concentrated plastic hinge model and the energy dissipation coefficient for each RC member in the guideline 「Nonlinear Analysis Model for Performance-Based Seismic Design of Reinforced Concrete Building Structures, 2021.」 The proposed equation for the energy dissipation coefficient does not include the factors of axial force ratio and spacing of transverse reinforcement of boundary element. The aspect ratio is applied to the flexural plastic model, despite considering shear-dominated behavior. Therefore, it is necessary to examine the effect of the aspect ratio according to the analysis model. In this study, the influence of each factor on the energy dissipation coefficient was analyzed by comparing the results of existing experimental research, nonlinear analysis using the fiber element model of a nonlinear analysis program(Perform 3D), and the energy dissipation coefficient proposed in the guideline. As the axial force ratio increased, the energy dissipation coefficient decreased, and as the spacing of transverse reinforcement of boundary element decreased, the energy dissipation coefficient increased. Additionally, as the aspect ratio increased, the energy dissipation coefficient tended to increase, with the aspect ratio showing the greatest influence.

State-of-the-art of advanced inelastic analysis of steel and composite structures

  • Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.341-354
    • /
    • 2001
  • This paper provides a state-of-the-art review on advanced analysis models for investigating the load-displacement and ultimate load behaviour of steel and composite frames subjected to static gravity and lateral loads. Various inelastic analysis models for steel and composite members are reviewed. Composite beams under positive and negative moments are analysed using a moment-curvature relationship which captures the effects of concrete cracking and steel yielding along the members length. Beam-to-column connections are modeled using rotational spring. Building core walls are modeled using thin-walled element. Finally, the nonlinear behaviour of a complete multi-storey building frame consisting of a centre core-wall and the perimeter frames for lateral-load resistance is investigated. The performance of the total building system is evaluated in term of its serviceability and ultimate limit states.

Finite Element Analysis on Process Improvement of the Multi-Forming for the Motor-Case of an Automobile (자동차용 모터케이스 성형용 멀티포머의 공정개선에 관한 유한요소해석)

  • Kim H. J.;Bae W. B.;Cho J. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.467-470
    • /
    • 2005
  • There are about 10 motors for tile actuator of the automation system in an auto-mobile recently. The performance of the motor-case is much related to the noise and the vibration of an auto-mobile Multi-Forming process is so much the better than existing deep-drawing or Multi-step forming by press by less cost, installation and staff. But there isn't the specific and general process design, so we aren't good at competition. So in the first step, I want to study about the core design for the multi-forming process. We can access by the elasto-plastic theory and the finite element method, and we use a commercial package of the Deform-2D and, Deform-3D which is based on three-dimensional elasto-plastic finite element, evaluated propriety oi the package. The evaluation of the package propriety was simulated by simple bending example. It was found the elasto-plastic theory was mostly in agreement with the simulation. We proposed that three type of section for the core and analyzed by finite element method (Deform-2D). We can get the best result with the ellipse type core. Then we apply the result of the preceding analysis to the finite element method (Deform-3D). In 3D-finite element analysis, we can get the result of 8/100mm-roundness. This result can help the improvement of the multi-forming process.

  • PDF

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.

Performance Evaluation of Inelastic Rotation Capacity of Special Moment Frame Connections (보-기둥 접합부를 가진 철근 콘크리트 모멘트 골조의 비탄성 회전 능력에 대한 평가)

  • Lee, Ki-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.688-691
    • /
    • 2004
  • This study summarizes results of a research project aimed at investigating the inelastic rotation capacity of beam-column joints of reinforced concrete moment frames. A total of 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-99 provisions. Then, the acceptance criteria, originally defined for steel moment frame connections in the AISC-97 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provided sufficient strength and are ductile up to a plastic rotation of $3\%$ without any major degradation in strength.

  • PDF

Seismic Behavior Factors of RC Staggered Wall Buildings

  • Kim, Jinkoo;Jun, Yong;Kang, Hyunkoo
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.355-371
    • /
    • 2016
  • In this study seismic performance of reinforced concrete staggered wall system structures were investigated and their behavior factors such as overstrength factors, ductility factors, and the response modification factors were evaluated from the overstrength and ductility factors. To this end, 5, 9, 15, and 25-story staggered wall system (SWS) structures were designed and were analyzed by nonlinear static and dynamic analyses to obtain their nonlinear force-displacement relationships. The response modification factors were computed based on the overstrength and the ductility capacities obtained from capacity envelopes. The analysis results showed that the 5- and 9-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15- and 25-story structures plastic hinges were more widely distributed throughout the stories. The computed response modification factors increased as the number of stories decreased, and the mean value turned out to be larger than the value specified in the design code.

DEVELOPMENT OF ELECTRICAL TESTING FACISITY ABOUT U.H.V. CABLE AND ACCESSORY (극 초고압 케이블 및 접속함 전기 시험 단말의 개발)

  • Kim, J.H.;Oh, E.J.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2014-2016
    • /
    • 2000
  • In order to meet recent increasing demand for electric power in large cities, plans are being made to introduce 345kV lines into large urban areas. Up to now, OF cables have been used for 345kV fines, but nowadays XLPE insulated cables are preferred as they are easier to maintain due to phenomenal advances in plastic insulation technology, therefore cable manufacturing companies are trying to improve the performance and reliability of UHV CV cables and their accessories. For the purpose, our company has developed facilities for testing UHV cables. In this paper, we describes the methodology adopted for the design and development of a test termination, conducted the electrical test of UHV cables. Based on detailed analytical studies for electrical field distribution, the internal electrical design for the testing end has been carried out.

  • PDF

Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities (수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구)

  • Choi, In-Hyuk;Baek, Eun-Rim;Lee, Sang-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.