• Title/Summary/Keyword: performance-based-plastic design

Search Result 179, Processing Time 0.029 seconds

Dynamic increase factor for progressive collapse of semi-rigid steel frames with extended endplate connection

  • Huang, Ying;Wu, Yan;Chen, Changhong;Huang, Zhaohui;Yao, Yao
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.617-628
    • /
    • 2019
  • As an extremely destructive accident, progressive collapse is defined as the spread of an initial local failure from element to element, resulting eventually in the collapse of an entire structure or disproportionately large of it. To prevent the occurrence of it and evaluate the ability of structure resisting progressive collapse, the nonlinear static procedure is usually adopted in the whole structure design process, which considered dynamic effect by utilizing Dynamic Increase Factor (DIF). In current researches, the determining of DIF is performed in full-rigid frame, however, the performance of beam-column connection in the majority of existing frame structures is not full-rigid. In this study, based on the component method proposed by EC3 guideline, the expression of extended endplate connection performance is further derived, and the connection performance is taken into consideration when evaluated the performance of structure resisting progressive collapse by applying the revised plastic P-M hinge. The DIF for structures with extended endplate beam-column connection have been determined and compared with the DIF permitted in current GSA guideline, the necessity of considering connection stiffness in determining the DIF have been proved.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Design of Boundary Confinement of Structural Walls (구조벽의 단부 횡보강 설계)

  • Kang, Su-Min;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.877-887
    • /
    • 2003
  • For a performance-based design of structural walls, it is necessary to develop a rational design method for determining the length and detail of boundary confinement so as to satisfy the given ductility demand. In the present study, the curvature capacity of a structural wall with boundary confinement was estimated considering the effects of various design parameters. The curvature demand of the plastic hinge corresponding to the given design displacement was also determined. By equalizing the curvature capacity to the demand, a design method for determining the length of boundary confinement, was developed. According to the design method, the length of boundary confinement increases as axial compressive load and design displacement increase, and as concrete strength, wall thickness, amount of lateral reinforcement and aspect ratio decrease. A study was performed on details for effective lateral confinement of walls with rectangular cross-section. Based on the findings, design guidelines on spacings of ties and cross-ties were proposed.

Structural Design of Coupled RC Structural Wall Considering Plastic Behavior (소성거동을 고려한 병렬 RC 구조벽체시스템의 설계)

  • Yu, Seung-Yoon;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2017
  • Reinforced concrete(RC) structural walls are major lateral load-resisting structural member in building structures. Generally these RC structural walls are coupled with each other by the coupling beams and slabs, and therefore they behave as RC coupled structural wall system. In the design of these coupled structural wall systems, member forces are calculated using elastic structural analysis. These elastic analysis methodologies for the design of coupled structural wall system was not reasonable because it can not consider their ultimate behavior and assure economic feasibility. Performance based design and moment redistribution method to solve these problems is regarded as a reasonable alternative design method for RC coupled structural wall system. However, it is not verified under various design parameters. In this study, nonlinear analysis of RC coupled structural wall system was performed according to various design parameters such as reinforcement ratio, ultimate concrete strain and wall height. Based on analysis results, design considerations for coupled RC structural wall system was proposed.

Enhancing Seismic Performance of Exterior R.C. Beam-Column Connections Using Headed Bars (헤디드 바를 사용한 외부 철근콘크리트 보-기둥 접합부의 내진성능 향상)

  • Shin, Hyun Oh;Yang, Jun Mo;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • The reinforced concrete beam-column connections are in lack of constructability and are likely to show anchorage failure because of the complex details of joint regions. Under seismic loads, a destruction of the column or the beam-column joint leads to collapse of the whole structures. For this reason, the safety of structures has to be guaranteed by following procedures which are based on the strong column-weak beam design concept: 1) failure of beam by generating plastic hinge in the beam maintained a certain distance from the surface of column, 2) failure of column or beam-column joint. In this study, headed bars were used as longitudinal reinforcements of beam and joint reinforcements in order to improve the strength and constructability of joint and to relocate plastic hinge. The finite element analyses (FEAs) were performed to the reinforced concrete beam-column joints utilizing headed bar reinforcements. To verify the availability of the analysis models, the FEAs for experimental tests performed by previous researchers were conducted and compared with the experimental results. Additional variables are also considered to confirm the excellence of headed bars. Analysis results indicate that the constructability of beam-column connections can be improved by using headed bars for the full anchorage of longitudinal reinforcements of beam under similar structural performance. In addition, the plastic hinge was relocated to the intended place by using headed bars as joint reinforcements. Under cyclic displacement loading, the energy dissipation capacity and ultimate stress were increased and the decrease in stiffness was minimized.

Seismic Retrofit of Asymmetric.Elasto-Plastic Structure Using Viscous Dampers (점성감쇠기를 이용한 비대칭.비탄성구조물의 내진보강)

  • 김진구;방성혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.87-93
    • /
    • 2002
  • A procedure for figuring out proper amount of additional viscous damping required to keep the inelastic deformation of a plan-wise asymmetric structure within a given target performance point was developed. To this end the behavior of an asymmetric nonlinear structure after yielding is investigated. Then a formula for the required amount of equivalent damping was derived based on the ductility demand of the structure. The procedure was applied to a five-story asymmetric structure subjected to an earthquake load. According to the comparison with the results from the dynamic time-history analysis, the structure with viscous dampers installed in accordance with the proposed procedure showed satisfactory seismic performance in both the stiff and the flexible edges.

Characteristics of Stress-strain Relationship of Concrete Confined by Lateral Reinforcement (횡철근에 의해 횡구속된 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.67-80
    • /
    • 2009
  • The basic concept of seismic design is to attain the ductility required in a design earthquake. This ductility can be obtained by providing sufficient lateral confinements to the plastic hinge regions of columns. The most cost-effective design might be derived by determining the proper amount of lateral confinement using a stress-strain relationship for confined concrete. Korean bridge design code requires the same amount of lateral confinement regardless of target ductility, but Japanese design code provides the stress-strain relationship of the confined concrete to determine the amount of lateral confinement accordingly. While design based on material characteristics tends to make the design process more involved, it makes it possible to achieve cost-effectiveness, which is also compatible with the concept of performance-based design. In this study, specimens with different numbers of lateral confinements have been tested to investigate the characteristics of the stress-strain relationship. Test results were evaluated, using several empirical equations to quantify the effects.

Seismic behavior of K-type eccentrically braced frames with high strength steel based on PBSD method

  • Li, Shen;Wang, Chao-yu;Li, Xiao-lei;Jian, Zheng;Tian, Jian-bo
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.667-685
    • /
    • 2018
  • In eccentrically braced steel frames (EBFs), the links are fuse members which enter inelastic phase before other structure members and dissipate the seismic energy. Based on the force-based seismic design method, damages and plastic deformations are limited to the links, and the main structure members are required tremendous sizes to ensure elastic with limited or no damage. Force-based seismic design method is very common and is found in most design codes, it is unable to determine the inelastic response of the structure and the damages of the members. Nowadays, methods of seismic design are emphasizing more on performance-based seismic design concept to have a more realistic assessment of the inelastic response of the structure. Links use ordinary steel Q345 (the nominal yielding strength $f_y{\geq}345MPa$) while other members use high strength steel (Q460 $f_y{\geq}460MPa$ or Q690 $f_y{\geq}690MPa$) in eccentrically braced frames with high strength steel combination (HSS-EBFs). The application of high strength steels brings out many advantages, including higher safety ensured by higher strength in elastic state, better economy which results from the smaller member size and structural weight as well as the corresponding welding work, and most importantly, the application of high strength steel in seismic fortification zone, which is helpful to popularize the extensive use of high strength steel. In order to comparison seismic behavior between HSS-EBFs and ordinary EBFs, on the basis of experimental study, four structures with 5, 10, 15 and 20 stories were designed by PBSD method for HSS-EBFs and ordinary EBFs. Nonlinear static and dynamic analysis is applied to all designs. The loading capacity, lateral stiffness, ductility and story drifts and failure mode under rare earthquake of the designs are compared. Analyses results indicated that HSS-EBFs have similar loading capacity with ordinary EBFs while the lateral stiffness and ductility of HSS-EBFs is lower than that of EBFs. HSS-EBFs and ordinary EBFs designed by PBSD method have the similar failure mode and story drift distribution under rare earthquake, the steel weight of HSS-EBFs is 10%-15% lower than ordinary EBFs resulting in good economic efficiency.

Design and characterization of a Muon tomography system for spent nuclear fuel monitoring

  • Park, Chanwoo;Baek, Min Kyu;Kang, In-soo;Lee, Seongyeon;Chung, Heejun;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.601-607
    • /
    • 2022
  • In recent years, monitoring of spent nuclear fuel inside dry cask storage has become an important area of national security. Muon tomography is a useful method for monitoring spent nuclear fuel because it uses high energy muons that penetrate deep into the target material and provides a 3-D structure of the inner materials. We designed a muon tomography system consisting of four 2-D position sensitive detector and characterized and optimized the system parameters. Each detector, measuring 200 × 200 cm2, consists of a plastic scintillator, wavelength shifting (WLS) fibers and, SiPMs. The reconstructed image is obtained by extracting the intersection of the incoming and outgoing muon tracks using a Point-of-Closest-Approach (PoCA) algorithm. The Geant4 simulation was used to evaluate the performance of the muon tomography system and to optimize the design parameters including the pixel size of the muon detector, the field of view (FOV), and the distance between detectors. Based on the optimized design parameters, the spent fuel assemblies were modeled and the line profile was analyzed to conduct a feasibility study. Line profile analysis confirmed that muon tomography system can monitor nuclear spent fuel in dry storage container.

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi;Marco A. Pisani;Marco Simoncelli
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.