• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.03 seconds

Design of BSB Neural Networks using Parametrization of Solution Space and Optimization of Performance Index on Domain of Attraction (해공간의 매개변수화와 DOA 성능지수의 최적화를 이용한 BSB 신경망 설계)

  • 임영희;박주영;박대희
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.264-272
    • /
    • 1995
  • This paper presents an efficient design method to realize an associative memory with BSB neural networks by means of the parametrization of the solution space and searching for the optimal solution using an evolution program. In particular, the performance index based on DOA analysis in this paper may make and associative memory implementation to reach on the level of practical success.

  • PDF

A new control approach for seismic control of buildings equipped with active mass damper: Optimal fractional-order brain emotional learning-based intelligent controller

  • Abbas-Ali Zamani;Sadegh Etedali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.305-315
    • /
    • 2023
  • The idea of the combination of the fractional-order operators with the brain emotional learning-based intelligent controller (BELBIC) is developed for implementation in seismic-excited structures equipped with active mass damper (AMD). For this purpose, a new design framework of the mentioned combination namely fractional-order BEBIC (FOBELBIC) is proposed based on a modified-teaching-learning-based optimization (MTLBO) algorithm. The seismic performance of the proposed controller is then evaluated for a 15-story building equipped with AMD subjected to two far-field and two near-field earthquakes. An optimal BELBIC based on the MTLBO algorithm is also introduced for comparison purposes. In comparison with the structure equipped with a passive tuned mass damper (TMD), an average reduction of 44.7% and 42.8% are obtained in terms of the maximum absolute and RMS top floor displacement for FOBELBIC, while these reductions are obtained as 30.4% and 30.1% for the optimal BELBIC, respectively. Similarly, the optimal FOBELBIC results in an average reduction of 42.6% and 39.4% in terms of the maximum absolute and RMS top floor acceleration, while these reductions are given as 37.9% and 30.5%, for the optimal BELBIC, respectively. Consequently, the superiority of the FOBELBIC over the BELBIC is concluded in the reduction of maximum and RMS seismic responses.

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

A Scheme on High-Performance Caching and High-Capacity File Transmission for Cloud Storage Optimization (클라우드 스토리지 최적화를 위한 고속 캐싱 및 대용량 파일 전송 기법)

  • Kim, Tae-Hun;Kim, Jung-Han;Eom, Young-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.670-679
    • /
    • 2012
  • The recent dissemination of cloud computing makes the amount of data storage to be increased and the cost of storing the data grow rapidly. Accordingly, data and service requests from users also increases the load on the cloud storage. There have been many works that tries to provide low-cost and high-performance schemes on distributed file systems. However, most of them have some weaknesses on performing parallel and random data accesses as well as data accesses of frequent small workloads. Recently, improving the performance of distributed file system based on caching technology is getting much attention. In this paper, we propose a CHPC(Cloud storage High-Performance Caching) framework, providing parallel caching, distributed caching, and proxy caching in distributed file systems. This study compares the proposed framework with existing cloud systems in regard to the reduction of the server's disk I/O, prevention of the server-side bottleneck, deduplication of the page caches in each client, and improvement of overall IOPS. As a results, we show some optimization possibilities on the cloud storage systems based on some evaluations and comparisons with other conventional methods.

Performance Evaluation of Chest X-ray Image Deep Learning Classification Model according to Application of Optimization Algorithm and Learning Rate (최적화 알고리즘과 학습률 적용에 따른 흉부 X선 영상 딥러닝 분류 모델 성능평가)

  • Ji-Yul Kim;Bong-Jae Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.5
    • /
    • pp.531-540
    • /
    • 2024
  • Recently, research and development on automatic diagnosis solutions in the medical imaging field using deep learning are actively underway. In this study, we sought to find a fast and accurate classification deep learning modeling for classification of pneumonia in chest images using Inception V3, a deep learning model based on a convolutional artificial neural network. For this reason, after applying the optimization algorithms AdaGrad, RMS Prop, and Adam to deep learning modeling, deep learning modeling was implemented by selectively applying learning rates of 0.01 and 0.001, and then the performance of chest X-ray image pneumonia classification was compared and evaluated. As a result of the study, in verification modeling that can evaluate the performance of the classification model and the learning state of the artificial neural network, it was found that the performance of deep learning modeling for classification of the presence or absence of pneumonia in chest X-ray images was the best when applying Adam as the optimization algorithm with a learning rate of 0.001. I was able to. And in the case of Adam, which is mainly applied as an optimization algorithm when designing deep learning modeling, it showed excellent performance and excellent metric results when selectively applying learning rates of 0.01 and 0.001. In the metric evaluation of test modeling, AdaGrad, which applied a learning rate of 0.1, showed the best results. Based on these results, when designing deep learning modeling for binary-based medical image classification, in order to expect quick and accurate performance, a learning rate of 0.01 is preferentially applied when applying Adam as an optimization algorithm, and a learning rate of 0.01 is preferentially applied when applying AdaGrad. I recommend doing this. In addition, it is expected that the results of this study will be presented as basic data during similar research in the future, and it is expected to be used as useful data in the health and bio industries for the purpose of automatic diagnosis of medical images using deep learning.

A Fuzzy-Neural Network Based Human-Machine Interface for Voice Controlled Robots Trained by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Izumi, Kiyotaka;Kiguchi, Kazuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.411-414
    • /
    • 2003
  • Particle swarm optimization (PSO) is employed to train fuzzy-neural networks (FNN), which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. The system has been successfully employed in a real life situation for navigation of a mobile robot.

  • PDF

Compression of Image Data Using Neural Networks based on Conjugate Gradient Algorithm and Dynamic Tunneling System

  • Cho, Yong-Hyun;Kim, Weon-Ook;Bang, Man-Sik;Kim, Young-il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.740-749
    • /
    • 1998
  • This paper proposes compression of image data using neural networks based on conjugate gradient method and dynamic tunneling system. The conjugate gradient method is applied for high speed optimization .The dynamic tunneling algorithms, which is the deterministic method with tunneling phenomenon, is applied for global optimization. Converging to the local minima by using the conjugate gradient method, the new initial point for escaping the local minima is estimated by dynamic tunneling system. The proposed method has been applied the image data compression of 12 ${\times}$12 pixels. The simulation results shows the proposed networks has better learning performance , in comparison with that using the conventional BP as learning algorithm.

Genetic Algorithm Based Decentralized Task Assignment for Multiple Unmanned Aerial Vehicles in Dynamic Environments

  • Choi, Hyun-Jin;Kim, You-Dan;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.163-174
    • /
    • 2011
  • Task assignments of multiple unmanned aerial vehicles (UAVs) are examined. The phrase "task assignment" comprises the decision making procedures of a UAV group. In this study, an on-line decentralized task assignment algorithm is proposed for an autonomous UAV group. The proposed method is divided into two stages: an order optimization stage and a communications and negotiation stage. A genetic algorithm and negotiation strategy based on one-to-one communication is adopted for each stage. Through the proposed algorithm, decentralized task assignments can be applied to dynamic environments in which sensing range and communication are limited. The performance of the proposed algorithm is verified by performing numerical simulations.

Routing Techniques for Data Aggregation in Sensor Networks

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.396-417
    • /
    • 2018
  • GR-tree and query aggregation techniques have been proposed for spatial query processing in conventional spatial query processing for wireless sensor networks. Although these spatial query processing techniques consider spatial query optimization, time query optimization is not taken into consideration. The index reorganization cost and communication cost for the parent sensor nodes increase the energy consumption that is required to ensure the most efficient operation in the wireless sensor node. This paper proposes itinerary-based R-tree (IR-tree) for more efficient spatial-temporal query processing in wireless sensor networks. This paper analyzes the performance of previous studies and IR-tree, which are the conventional spatial query processing techniques, with regard to the accuracy, energy consumption, and query processing time of the query results using the wireless sensor data with Uniform, Gauss, and Skew distributions. This paper proves the superiority of the proposed IR-tree-based space-time indexing.

Cause of Filtrate Deterioration and Its Improvement in Rapid Filtration (급속여과공정에서 여과수질 저하원인 및 개선방안)

  • Kim, Jin-Keun;Lee, Song-Hee;Kim, Jae-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2010
  • Particle removal is an important step taken at water treatment plants (WTPs) for the safety of tap water due to its proportionality to the pathogen inactivation. Government promulgated a treatment technique for the optimization of filtration including continuous turbidity monitoring using on-line turbidimeters. Based on the turbidity measurements of 460 filters at 31 WTPs operated by K-water, the evaluation of filtration performance and the investigation of major causes related to particle breakthrough were explored. 98.1 % of the filters had an effluent turbidity measurement which was less than 0.1 NTU, but turbidity breakthrough of more than 0.3 NTU was noticed occasionally which is in violation of AWWA 5-Star guidelines. It was shown that the optimization of coagulation, filter-to-waste, the observance of optimal filtration velocity and backwashing process based on filtrate turbidity were crucial for the improvement of filtrate.