• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.026 seconds

A Step-wise Elimination Method Based on Euclidean Distance for Performance Optimization Regarding to Chemical Sensor Array (유클리디언 거리 기반의 단계적 소거 방법을 통한 화학센서 어레이 성능 최적화)

  • Lim, Hea-Jin;Choi, Jang-Sik;Jeon, Jin-Young;Byu, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.258-263
    • /
    • 2015
  • In order to prevent drink-driving by detecting concentration of alcohol from driver's exhale breath, twenty chemical sensors fabricated. The one of purposes for sensor array which consists of those sensors is to discriminate between target gas(alcohol) and interference gases($CH_3CH_2OH$, CO, NOx, Toluene, and Xylene). Wilks's lambda was presented to achieve above purpose and optimal sensors were selected using the method. In this paper, step-wise sensor elimination based on Euclidean distance was investigated for selecting optimal sensors and compared with a result of Wilks's lambda method. The selectivity and sensitivity of sensor array were used for comparing performance of sensor array as a result of two methods. The data acquired from selected sensor were analyzed by pattern analysis methods, principal component analysis and Sammon's mapping to analyze cluster tendency in the low space (2D). The sensor array by stepwise sensor elimination method had a better sensitivity and selectivity compared to a result of Wilks's lambda method.

Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption

  • Chung, Jong-Moon;Park, Yong-Suk;Park, Jong-Hong;Cho, HyoungJun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3090-3102
    • /
    • 2015
  • The accuracy of an augmented reality (AR) application is highly dependent on the resolution of the object's image and the device's computational processing capability. Naturally, a mobile smart device equipped with a high-resolution camera becomes the best platform for portable AR services. AR applications require significant energy consumption and very fast response time, which are big burdens to the smart device. However, there are very few ways to overcome these burdens. Computation offloading via mobile cloud computing has the potential to provide energy savings and enhance the performance of applications executed on smart devices. Therefore, in this paper, adaptive mobile computation offloading of mobile AR applications is considered in order to determine optimal offloading points that satisfy the required quality of experience (QoE) while consuming minimum energy of the smart device. AR feature extraction based on SURF algorithm is partitioned into sub-stages in order to determine the optimal AR cloud computational offloading point based on conditions of the smart device, wireless and wired networks, and AR service cloud servers. Tradeoffs in energy savings and processing time are explored also taking network congestion and server load conditions into account.

RNG-based Scatternet Formation Algorithm for Small-Scale Ad-Hoc Network (소규모 분산망을 위한 RNG 기반 스캐터넷 구성 알고리즘)

  • Cho, Chung-Ho
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.17-29
    • /
    • 2007
  • This paper addresses a RNG based scatternet topology formation, self-healing, and routing path optimization for small-scale distributed environment, which is called RNG-FHR(Scatternet Formation, self-Healing and self-Routing path optimization) algorithm. We evaluated the algorithm using ns-2 and extensible Bluetoothsimulator called blueware to show that RNG-FHR does not have superior performance, but is simpler and more practical than any other distributed algorithms from the point of depolying the network in the small-scale distributed dynamic environment due to the exchange of fewer messages and local control. As a result, we realized that even though RNG-FHR is unlikely to be possible for deploying in large-scale environment, it surely can be deployed for performance and practical implementation in small-scale environment.

  • PDF

RLDB: Robust Local Difference Binary Descriptor with Integrated Learning-based Optimization

  • Sun, Huitao;Li, Muguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4429-4447
    • /
    • 2018
  • Local binary descriptors are well-suited for many real-time and/or large-scale computer vision applications, while their low computational complexity is usually accompanied by the limitation of performance. In this paper, we propose a new optimization framework, RLDB (Robust-LDB), to improve a typical region-based binary descriptor LDB (local difference binary) and maintain its computational simplicity. RLDB extends the multi-feature strategy of LDB and applies a more complete region-comparing configuration. A cascade bit selection method is utilized to select the more representative patterns from massive comparison pairs and an online learning strategy further optimizes descriptor for each specific patch separately. They both incorporate LDP (linear discriminant projections) principle to jointly guarantee the robustness and distinctiveness of the features from various scales. Experimental results demonstrate that this integrated learning framework significantly enhances LDB. The improved descriptor achieves a performance comparable to floating-point descriptors on many benchmarks and retains a high computing speed similar to most binary descriptors, which better satisfies the demands of applications.

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO4/Graphite Electrodes in High Capacity Lithium-ion Batteries

  • Yu, Seungho;Kim, Soo;Kim, Tae Young;Nam, Jin Hyun;Cho, Won Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.79-88
    • /
    • 2013
  • $LiFePO_4$ is a promising active material (AM) suitable for use in high performance lithium-ion batteries used in automotive applications that require high current capabilities and a high degree of safety and reliability. In this study, an optimization of the electrode design parameters was performed to produce high capacity lithium-ion batteries based on $LiFePO_4$/graphite electrodes. The electrode thickness and porosity (AM density) are the two most important design parameters influencing the cell capacity. We quantified the effects of cathode thickness and porosity ($LiFePO_4$ electrode) on cell performance using a detailed one-dimensional electrochemical model. In addition, the effects of those parameters were experimentally studied through various coin cell tests. Based on the numerical and experimental results, the optimal ranges for the electrode thickness and porosity were determined to maximize the cell capacity of the $LiFePO_4$/graphite lithium-ion batteries.

Improved marine predators algorithm for feature selection and SVM optimization

  • Jia, Heming;Sun, Kangjian;Li, Yao;Cao, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1128-1145
    • /
    • 2022
  • Owing to the rapid development of information science, data analysis based on machine learning has become an interdisciplinary and strategic area. Marine predators algorithm (MPA) is a novel metaheuristic algorithm inspired by the foraging strategies of marine organisms. Considering the randomness of these strategies, an improved algorithm called co-evolutionary cultural mechanism-based marine predators algorithm (CECMPA) is proposed. Through this mechanism, search agents in different spaces can share knowledge and experience to improve the performance of the native algorithm. More specifically, CECMPA has a higher probability of avoiding local optimum and can search the global optimum quickly. In this paper, it is the first to use CECMPA to perform feature subset selection and optimize hyperparameters in support vector machine (SVM) simultaneously. For performance evaluation the proposed method, it is tested on twelve datasets from the university of California Irvine (UCI) repository. Moreover, the coronavirus disease 2019 (COVID-19) can be a real-world application and is spreading in many countries. CECMPA is also applied to a COVID-19 dataset. The experimental results and statistical analysis demonstrate that CECMPA is superior to other compared methods in the literature in terms of several evaluation metrics. The proposed method has strong competitive abilities and promising prospects.

Camouflaged Adversarial Patch Attack on Object Detector (객체탐지 모델에 대한 위장형 적대적 패치 공격)

  • Jeonghun Kim;Hunmin Yang;Se-Yoon Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.

Optimization of Thinned Antenna Arrays using a Least Square Method

  • Chang Byong Kun;Dae Jeon Chang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.165-168
    • /
    • 1999
  • This paper concerns a least square approach to optimizing a thinned antenna array with respect to antenna spacing to improve the sidelobe performance. A least square method based on a modified version of the modified perturbation method is proposed to efficiently synthesize an optimum pattern in a thinned array. It is demonstrated that the array performance improves with the proposed method, compared with the conventional method.

  • PDF

APPLICATION OF OBJECTIVE FUNCTIONS FOR THE OPTIMAL FILTER DESIGN FOR HVDC INVERTER

  • Oh, Sung-Chul;Chung, Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.909-913
    • /
    • 1998
  • Transient and static characteristics of HVDC inverter can be analyzed with various simulation tools. For the optimal filter design, various performance criteria are proposed. In this paper, performance index is calculated based on proposed per phase equivalent circuit. Voltage and harmonic and filter power loss are selected as criteria. Optimization procedure is performed to find optimal passive filter parameters. Dynamic characteristics is also analyzed with proposed equivalent circuit.

  • PDF