
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, Aug. 2015 3090

Copyright ⓒ 2015 KSII

A preliminary version of this paper was presented at ICONI 2014 (“Cloud Offloading Requirements of Augmented

Reality Applications on Smart Devices for Reduced Energy Consumption”), and was selected as an outstanding

paper. This version exapands on the experimental setup and provides further performance analysis on optimal

offloading. This work was supported by the ICT R&D program of MSIP/IITP [B0101-15-1276, Access Network

Control Techniques for Various IoT Services] and the Basic Science Research Program through the National

Research Foundation (NRF) funded by the Ministry of Education (NRF-2013R1A1A2012082), Republic of Korea.

http://dx.doi.org/10.3837/tiis.2015.08.020 ISSN : 1976-7277

Adaptive Cloud Offloading of Augmented
Reality Applications on Smart Devices for

Minimum Energy Consumption

Jong-Moon Chung, Yong-Suk Park, Jong-Hong Park, and HyoungJun Cho
School of Electrical & Electronic Engineering, Yonsei University

Seoul, Republic of Korea

[e-mail: {jmc, ysp761, jhwannabe, soarer}@yonsei.ac.kr]

*Corresponding author: Jong-Moon Chung

Received March 26, 2015; accepted June 8, 2015; published August 31, 2015

Abstract

The accuracy of an augmented reality (AR) application is highly dependent on the resolution

of the object’s image and the device’s computational processing capability. Naturally, a

mobile smart device equipped with a high-resolution camera becomes the best platform for

portable AR services. AR applications require significant energy consumption and very fast

response time, which are big burdens to the smart device. However, there are very few ways to

overcome these burdens. Computation offloading via mobile cloud computing has the

potential to provide energy savings and enhance the performance of applications executed on

smart devices. Therefore, in this paper, adaptive mobile computation offloading of mobile AR

applications is considered in order to determine optimal offloading points that satisfy the

required quality of experience (QoE) while consuming minimum energy of the smart device.

AR feature extraction based on SURF algorithm is partitioned into sub-stages in order to

determine the optimal AR cloud computational offloading point based on conditions of the

smart device, wireless and wired networks, and AR service cloud servers. Tradeoffs in energy

savings and processing time are explored also taking network congestion and server load

conditions into account.

Keywords: smart devices, augmented reality, cloud offloading, energy optimization,

performance optimization, quality of experience

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3091

1. Introduction

Augmented reality (AR) is an emerging field in information technology in which video

images taken by a camera are enhanced with computer-generated virtual objects or

video/audio information in real-time. As shown in Fig. 1, the image of an object may be

acquired using the built-in camera of a smartphone and processed to obtain additional

information about the object. This information is made available and presented to the user by

overlaying it with the real view of the object, thereby augmenting the reality. AR introduces a

whole new way of human-computer interaction, and it provides endless opportunities for

applications in diverse fields including, but not limited to, industrial, commercial, and

entertainment areas.

Smart devices such as smartphones and tablet computers are ideal platforms for AR

applications, providing the necessary imaging, sensory, and networking peripherals. Smart

devices today come equipped with powerful processors, graphic processing units,

high-resolution cameras and displays, location sensors, and high-speed wireless network

interfaces. As smart devices are becoming a popular and reasonably priced commodity, the

number of AR applications and their users is expected to rapidly increase within a few years

[1]. At the same time, AR applications can greatly enhance mobile user experience by serving

as an interface itself, making mobile search transparent to the user and reduce search efforts.

AR requires little interaction from the user since the smart device senses and analyzes the

surroundings and provides location based or context sensitive information in real-time.

Even though smart devices are seeing an overall performance increase, they are still

incomparable to desktop computers and servers in terms of performance capacity. Many

applications, AR applications inclusive, are still computationally intensive to be fully

supported on a smart device. In addition, the specification and performance increase in smart

devices consequently has imposed more stringent energy consumption constraints on these

battery-powered devices. Recently, mobile cloud computing has emerged to fill this gap in

performance and save energy [2]. In mobile cloud computing, smart devices make use of

external resources accessible via wireless networks. Computationally intensive tasks are

offloaded to the cloud server instead of being processed locally on the mobile device.

Offloading is the process of loading or transferring a section of application execution to more

powerful processing platforms such as servers or clouds. Offloading can potentially save both

energy and time for completing a given task on the mobile device.

In AR, mobile visual search (MVS) applications in particular can benefit from mobile

cloud offloading. MVS is based on object recognition. MVS performs visual search in which

the data obtained from the image queried is compared and matched against a database of

images. The database used for visual search is quite massive and cannot be located locally on

the smart device due to memory constraints. Therefore, the database needs to reside on the

server side and offloading becomes essential for MVS applications. MVS involves extensive

search and matching for comparison. Therefore, algorithms and tasks involved in MVS are

also computationally intensive, which affects the battery power consumption of the mobile

device [3]. Offloading may decrease the processing load of mobile devices and save energy,

and consequently, it can extend the use time and battery lifetime of the mobile device.

Although computational offloading provides certain benefits to MVS applications, it may

not always be beneficial to offload from the user experience point of view. If the network is

3092 Chung et al.: Adaptive Cloud Offloading of Augmented Reality Applications

congested or if the cloud server is overloaded or unreachable, the incurred processing delay at

the AR cloud server could result in an annoying or intolerable user experience. The amount of

mobile network traffic and the load on cloud servers have busy day and busy hour (BDBH)

periods that result in significant fluctuations in processing speed and delay time. Some of these

variations have patterns that are predictable, but many are not. Therefore, real-time delay

factors that affect user experience, such as mobile network traffic conditions and AR cloud

server status, need to be taken into account when offloading decisions are made. This is why

adaptable computation offloading control is necessary and can be very effective. Previous

works related to computational offloading focus on either maximizing energy savings or

optimizing mobile application responsiveness. In order to be truly useful, focus should be

given in maximizing user experience, balancing energy and time savings accordingly under

the given conditions and circumstances.

In this paper, mobile computation offloading of MVS AR applications is considered,

taking into account varying network traffic and server conditions. In the following sections,

tradeoffs between computation time, efficiency, and mobile device energy savings are

analyzed. The goal is to determine potential and optimal mobile offloading points under given

conditions and priorities that satisfy user quality of experience (QoE) and provide device

energy savings.

Fig. 1. AR application based on MVS where context-sensitive information is displayed on the

smartphone’s screen after receiving the associated information from the AR cloud server

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3093

2. Mobile Visual Search

In this section, the MVS AR application and its analysis method are explained. The basic steps

involved in MVS are shown in Fig. 1. MVS applications use the smart device’s built-in camera

in order to acquire a snapshot picture or motion video image of the scenery or object. Images

are not compared pixel-by-pixel for object recognition. Instead, distinct characteristics called

“features” are extracted from the snapshot. Pictures may be taken from different angles,

distances, or lighting conditions. Therefore, features extracted should be robust against scale

(i.e., different sizes), rotation, illumination, or viewpoint in order to be useful for visual search.

Extracting features makes data to be processed smaller and more manageable as well. The

extracted features are then compared to other sets of features previously stored in a database.

Based on the number of feature matches in common, a set of candidate images is selected from

the database. Geometric verification is further performed on the selected images to verify that

the matching features between the two images being compared are consistent with changes in

viewpoints. If two images are determined to be the same, additional information associated

with the feature is retrieved and provided to the user. For example, when a snapshot of a

product is taken, the product is identified by the MVS application by finding matching product

features from the database. Once identified, information associated with the product such as

price, manufacturer, contents, etc. can be retrieved and provided to the user. The retrieved

information may be in any format the application chooses it to be. The information may be in

text format and presented to the user by overlaying it on top of the original image. If a scenery

image is taken at a tourist site, video clips or voice guides may be provided. The possibilities

of creating diverse applications using AR on smart devices are virtually endless.

Although it is possible to process all the MVS steps on the smart device, due to excessive

energy consumption, it is preferable to partition the tasks between the mobile client and AR

cloud server as seen in Fig. 1. Image acquisition and feature extraction take place on the

mobile smart device since the image needs to be acquired at the user’s location. Extracting the

features of the image and transmitting them over the network also reduces the payload size

compared to transmitting the original image captured. Feature matching and verification

against the database takes place on the cloud server since most visual search databases are too

memory intensive to be supported on the mobile smart device.

The key MVS process performed on the smart device’s platform is feature extraction. As

previously mentioned, the features extracted for object recognition need to be robust enough to

match images of different scales, rotations, and viewpoints. Many different algorithms for

feature detection and description have been developed over the years, the best known being

Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). SIFT

uses difference of Gaussian and the Gaussian pyramid to find features [4]. SURF makes use of

Hessian blobs and uses box filters instead of Gaussian kernels to simplify and speed up

computation [5].

The theoretical complexity of SIFT and SURF is (O(mn + k)) where m and n represent the

width and height of the image (both in units of pixels), respectively, and k represents the

number of key points or interest points [6]. Interest points are the distinctive features of the

image. The theoretical complexity of SIFT and SURF imply that the computation increases

linearly with the dimensions or size of the image to be processed. As smart devices evolve,

higher resolution cameras and displays will be at the user’s disposal, processing ultra-high

resolution images ranging from 8 to 20 megapixels. The introduction of ultra-high resolution

images enables accurate AR feature identification, but at the same time this creates a huge

burden in terms of processing data for MVS AR applications. Therefore, computation for

3094 Chung et al.: Adaptive Cloud Offloading of Augmented Reality Applications

feature extraction on the smart device will significantly increase. Sending vast amounts of data

over a wireless link for visual image search may congest the network. Processing the offloaded

data on the server will also take more time and resources. In the process, the energy

consumption of the mobile device will also increase due to possible retransmissions and

timeouts. Therefore, it is important to determine the optimal offloading point for feature

extraction that can balance the load between the cloud server and the smart device.

In this paper, the optimal offloading point within the SURF feature extraction process is

investigated to achieve further performance enhancement and energy savings on the mobile

device when performing MVS. SIFT provides the best results, but SURF produces good

matching performance at a faster, reduced computational complexity [7]. Therefore, for the

purposes of this paper, SURF is used for the evaluation of feature extraction offloading.

Fig. 2. Process steps involved in feature extraction based on SURF

Fig. 2 shows SURF feature extraction subdivided into six steps. The step-1 Grayscale Image

Generation (GIG) process changes the original JPEG image captured by the device into a gray

valued image in order to make it robust to color modifications. The step-2 Integral Image

Generation (IIG) process builds an integral image from the grayscale image which allows fast

calculation of summations over image sub-regions. The step-3 Response Map Generation

(RMG) process constructs the scale-space in order to detect interest points using the

determinant of the image’s Hessian matrix. Using the scale response maps generated in the

previous stage, the maxima and minima (which are used as the actual interest points) are

detected during the Interest Point Detection (IPD) in step-4. In order to achieve invariance to

image rotation, each detected interest point is assigned a reproducible orientation in the

Orientation Assignment (OA) process in step-5. This orientation provides rotation invariance.

The step-6 Descriptor Extraction (DE) is the process where an interest point is uniquely

identified to be distinguished from other interest points. In terms of computation, GIG and IIG

are trivial while IPD is the most complex among the steps. The processes after step-6 have to

be executed at the AR cloud server, and the final AR information will be returned to the smart

device for display.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3095

The input and output data file sizes (in units of bits) at each step is also shown in Fig. 2. H,

W, and I represent the image height, image width, and number of interest points, respectively.

It shows that the output data size at each step is dependent on the size of the image queried.

The output data size increases in relation to the increasing image resolution. The output data

size is dependent on the type of image, since the number of interest points detected varies

depending on the image being processed. If an image has many interest points, the output data

size increases. GIG, IIG, RMG, and IPD process the image on a pixel-by-pixel basis, so these

stages are dependent on the size of the image (i.e., H and W), while OA and DE are also

dependent on the number of interest points detected (i.e., I) in addition to H and W. GIG

outputs a 32-bit grayscale image of the query image, and since each pixel is represented as 32

bits, the output data size becomes W x H x 32 bits. IIG generates a 32-bit integral image from

the grayscale image generated by GIG. Since each pixel of the integral image is also

represented as 32 bits, the size of the resulting integral image is W x H x 32 bits. The integral

image is used by RMG to create scale spaces, where the scale space is divided into octaves

which represent a series of filter response maps. Octaves encompass a scaling factor of 2, so

the size of the filter corresponding to the image is divided by 2 at each subsequent scale (i.e., H

and W are divided by 2 at each subsequent scale). The number of octaves may vary based on

the settings, where in this particular example, 4 octaves are used. For the first octave, the scale

space is constructed for 4 filter sizes (9x9, 15x15, 21x21, and 27x27), which is represented as

4(W/2 x H/2) in the output equation for RMG in Fig. 2. For the second octave, a scale space is

constructed for 2 filter sizes (39x39 and 51x51), which is represented as 2(W/4 x H/4). For the

third octave, the scale space is constructed for filter sizes of 75x75 and 99x99, which is

represented as 2(W/8 x H/8), and for the fourth octave, the scale space is constructed for filter

sizes of 147x147 and 195x195, which is represented as 2(W/16 x H/16). The constructed scale

space is used to detect interest points in the IPD stage, where the detected interest points are

represented as a vector in rectangular coordinates of x and y. The output of the IPD stage

includes the x and y vector coordinates of each of the I detected interest points along with the

IIG file, which are sent to the OA stage. The OA process computes the orientation information

which is saved as a vector along with the x and y coordinates. The output of the OA stage

contains the orientation information of each of the I detected interest points along with the IIG

file, which are sent to the DE stage. The DE process generates a descriptor vector of length 64

for each interest point, which results in a size of 64 x 32 bits x I. Each element of the descriptor

vector represents an intensity pattern that preserves spatial information of the interest point.

3. Offloading Point Decision

The size of the data to be transmitted varies depending on the offloading point. The objective

is to select an offload point that can save energy and satisfy user QoE requirements (i.e., time

bounded performance requirements). In this section, the basic offloading scenario for feature

extraction process is defined. Fig. 3 shows the possible offloading switching points between

the smart device and the AR cloud server. The smart device offloads by transmitting the output

data at step-S (ranging from step-1 to step-6 in SURF) to the AR cloud server. If S < 6, the

cloud server will carry on the feature extraction processes on behalf of the smart device

beginning at step-S+1. If offloading takes place, the server will execute the remaining feature

extraction process until completion, all the way to the final step SF, corresponding to step-6 DE

(i.e., SF = 6 in SURF). The amount of data processing at step-n is represented as n (in units of

bits). Therefore, the total feature extraction data processing by the smart device can be

represented as the summation of 1 to S , and the total feature extraction data processing by

3096 Chung et al.: Adaptive Cloud Offloading of Augmented Reality Applications

the cloud server can be represented as the summation of 1S to
FS , as presented in Fig. 3.

Fig. 3. Computation offloading example based on several SURF feature extraction process steps

between the smart device and the cloud server

Fig. 4. Total time required for MVS AR application when mobile cloud offloading is used

Fig. 4 shows the overall time involved in mobile cloud offloading TAR (in units of seconds),

for the MVS AR application. TM represents the time required by the smart device. This is the

feature extraction process time spent by the smart device before offloading at step-S. The

smart device needs to transmit offloading data and receive MVS results over the wireless link.

The overhead in time incurred for transmission (uplink) and reception (downlink) are TUL and

TDL, respectively. Additional overhead is incurred by data traversing various routers and

switches within the wired network, which is represented by TRS. TC represents the time spent

by the cloud server in performing the offloaded feature extraction from step-S+1. TDB

represents the time spent by the cloud server to search and identify matching features in the

AR database.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3097

Table 1. Computation offloading parameters

Parameter Units Description

αn bits

Data processed at step-n of feature extraction. Computed based

on measured code execution time (s), CPU frequency (Hz), and

amount of data the CPU can process in a cycle (bits).

vm bits/s
Maximum CPU processing speed of mobile smart device.

Obtained from device specification.

dm
Normalized

0 ≤ dm ≤ 1

Delay influence factor of mobile smart device. Computed based

on monitoring device CPU usage statistics (e.g. top command).

vc bits/s
Maximum CPU processing speed of cloud server. Obtained from

server specification.

dc
Normalized

0 ≤ dc ≤ 1

Delay influence factor of cloud server. Computed based on

monitoring server CPU usage statistics. The server provides

updates of dc to the device periodically.

TDB(I, H,

W)
s

Function that returns the AR database access time. Takes number

of interest points (I), image height (H) and width (W) as

parameters. Value estimated based on previous measurements of

database query and processing time.

F(S) bits

Output data to be sent uplink to the cloud server at offloading step

S. The size of data transmitted varies depending on the size of the

input data and offloading step S.

FF bits
Final result data returned by the server in downlink to the smart

device. Variable size data depending on the information returned.

RUL bits/s
Maximum data rate for uplink. Varies depending on the current

communication link used.

dUL
Normalized

0 ≤ dUL ≤ 1

Delay influence factor for uplink. Measured using traceroute

tool. The first hop is considered as wireless link and its delay

measurements are used.

RDL bits/s
Maximum data rate for downlink. Varies depending on the

current communication link used.

dDL
Normalized

0 ≤ dDL ≤ 1
Delay influence factor for downlink.

TRS s Network traversing delay. Measured using traceroute tool.

TQoE s

Maximum service response time expected or tolerable by the

user. Variable value depending on service and application based

on user feedback.

ε J/bit

Mobile device energy consumption parameter.

ε = Power Measured (W) * Operation Time (s) / Code Executed

(bits)

PUL W
Power consumption during uplink. Measured using power meter

connected to the smart device’s battery.

PDL W
Power consumption during downlink. Measured using power

meter connected to the smart device’s battery.

The time can be further detailed as the amount of data divided by the data processing speed.

Table 1 lists the detailed computation offloading parameters involved. Feature extraction

3098 Chung et al.: Adaptive Cloud Offloading of Augmented Reality Applications

processing time at the smart device can be obtained from 


S

n
n

mmvd 1

1
 , which is based on the

total data processed by the smart device (i.e., summation of 1 to S) divided by the smart

device’s parameters vm and dm. The delay influence factor dm is normalized as 0  dm  1 in

which dm=1 results in no delay and dm=0 results in infinite delay. Other delay influence factors

that need to be considered in this analysis are dc for the cloud server, dUL for uplink, and dDL for

downlink, all of which are defined the same way as dm. The feature extraction processing time

at the server can be obtained from 


FS

Sn
n

ccvd 1

1
 , which is based on the total data processed by

the server (i.e. summation of 1S to
FS) divided by the cloud server’s parameters vc and dc.

TDB(I,H,W) represents the time required by the AR database. The time consumed over the

wireless network is
ULUL Rd

SF)(
 for uplink and

DLDL

F

Rd

F
 for downlink, where F(S) and FF

represent the amount of data sent uplink and downlink, respectively. Commonly, FF < F(S)

since FF only consists of the final results, such as AR information of the extracted features and

position information on where to place this information on the image.

The total time required for the AR application TAR is upper bounded by the required QoE

time TQoE. Since TAR must be less than or equal to TQoE, equation (1) becomes the constraint of

the energy minimizing adaptive offloading point control process.

QoERS
DLDL

F

ULUL
DB

S

Sn
n

cc

S

n
n

mm
AR TT

Rd

F

Rd

SF
WHIT

vdvd
ST

F













)(
),,(

11
)(

11

 (1)

The energy consumed by the smart device ESD (based on offloading feature extraction at

step S) involves the energy for processing up to step S, the energy for transmitting the output

file of step S, and the energy to receive the results from the cloud server. The energy for

processing up to step S can be obtained by multiplying the smart device’s energy consumption

parameter ε to the process bit amount 


S

n
n

1

 . The energy for transmission of output and

reception of results can be obtained by considering the power consumption parameters PUL for

uplink and PDL for downlink respectively multiplied to the time durations of
ULUL Rd

SF)(
 for

uplink and
DLDL

F

Rd

F
 for downlink. Therefore, ESD can be represented as in (2).

DLDL

F
DL

ULUL
UL

S

n
nSD

Rd

F
P

Rd

SF
PSE 



)(
)(

1

 (2)

As transmission requires more power compared to reception (i.e., PDL < PUL) and since the

intermediate data transmitted for feature extraction is much larger than the result data returned

by the cloud server (i.e., FF < F(S)). Considering the influence of both of these inequalities, it

is safe to assume that
ULUL

UL
DLDL

F
DL

Rd

SF
P

Rd

F
P

)(
 . For the analysis in this paper, the term

DLDL

F
DL

Rd

F
P will be neglected for simplification.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3099

4. Experiments & Performance Analysis

In this section, a performance analysis of the AR experiments conducted on smartphones is

presented. If only energy consumption is considered, the processing time may increase

significantly, affecting the performance of the AR process and leading to an unbearable time

delay for the user. Therefore, an execution time limit needs to be imposed when attempting to

minimize the energy consumption of the smart device. Therefore the time requirement of (1)

and the energy consumption profile of (2) are used together in determining the offloading

point that consumes the least amount of energy for the smart device while satisfying the QoS

requirements. For this analysis, first (1) is organized in terms of 


S

n
n

1

 and the inequality is

inserted into (2), to obtain the energy upper bound (EBound) of ESD(S) presented in (3).

















 






RSDB

S

Sn
n

cc
QoEmmF

DLDL

mmDL

ULUL

mmUL
BoundSD TWHIT

vd
TvdF

Rd

vdP
SF

Rd

vdP
ESE

F

),,(
1

)()(
1


 (3)

Based on constraint (3), the value of S that results in the minimum ESD(S) value can be

obtained.

For each MVS iteration, the adaptive computation offloading process shown in Fig. 5 is

performed. First, all the relevant parameters are gathered. The parameters are computed and

updated as summarized in Table 1. Then for all possible offloading switching points S, the

corresponding ESD and EBound are computed. The switching point S that satisfies the constraint

ESD ≤ EBound and gives the maximum energy savings (i.e., minimum EBound) is selected as the

offload point. If no S satisfies the constraint (i.e., ESD > EBound), the S with minimum ESD is

selected. Local computation of feature extraction is done up to step S, and computation

offloading is performed at step S+1.

Fig. 5. Flow chart of adaptive computation offloading process.

Experiments were conducted based on actual measurements using a Nexus One

(HTC-PB99400) smartphone where a desktop PC server was used to emulate the AR cloud

server and database, as shown in Fig. 6. The Nexus One smart device runs on Android 2.3 and

has a 1 GHz CPU, 480x800 display resolution, and 5 Mpixel rear camera. The desktop server

uses a Windows operating system with an Intel Core2 Quad CPU 2.50 GHz and 4 GB of RAM.

Images of varying resolutions of 640x480, 1024x768, and 1280x960 were tested in the AR

process to measure the energy consumption and processing time. The measured values were

divided by the number of pixels and interest points, and their average and standard deviation

values were used in the performance analysis. The average energy per bit consumed by the

feature extraction process on the smartphone was measured to be ε = 0.0011 J/bit. Statistical

analysis was also performed on the network traffic data sampled for delay influence factor

computation. The Kolmogorov-Smirnov (K-S) test was used to verify the probability

distribution function (PDF) of the measured data. The K-S test can be used to compare a

sample with a reference probability distribution. For each empirical distribution of the

measured data and the cumulative distribution function (CDF) of the candidate distribution,

values of distance  nnD /11.012.0   and significance level 





1

21 22

)1(2
i

nii e  are

3100 Chung et al.: Adaptive Cloud Offloading of Augmented Reality Applications

calculated, where n is the number of measurements and ε is the maximum difference between

the empirical data and the CDF of the candidate distribution. The distribution with the smallest

D and the largest α is considered as the proper distribution of the measured data. Test results

show that the measured data comes from a normal distribution.

Fig. 6. Experiment setup showing Nexus One smartphone, power meter connections, and PC server as

the emulated AR cloud server and database

(a) (b)

Fig. 7. Experiment results: (a) energy consumed when offloading; (b) minimum energy offloading

points that satisfy (3) for SURF feature extraction process steps depending on uplink delay and server

congestion

a

)

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Delay Factor of Uplink, d
UL

C
o

n
g

es
ti

o
n

 F
a

ct
o

r
o

f
C

lo
u

d
 S

er
v

er
, d

c

RMG
DE

GIG

IPDOA

GIG
IIG

RMG
IPD

OA
DE

0.2
0.40.6

0.8
1

-5

-4

-3

-2

-1

0

1

2

Delay Factor of Uplink, d
UL

E
SD

E
Bound

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3101

The experiment measurement results were compared to the resulting values of (1), (2), and

(3), which confirmed an accurate match. Fig. 7-(a) compares ESD(S) and EBound based on dc =

0.01 and dUL = 1. In Fig. 7-(a), among the points that satisfy (3) (i.e., ESD  EBound), the

minimum energy consuming step-S can be found. By extending this method for various

parameter combinations, a comprehensive view of the experimental results is presented in Fig.

7-(b). Fig. 7-(b) presents the optimal offloading points based on a variety of dc and dUL

conditions. The graph shows that even under poor network or server conditions there are

varying points in time where it is more effective to offload rather than execute the entire

feature extraction process on the smart device. For instance, given server load dc = 0.1 and

maximum upload throughput dUL = 1, offloading after the GIG step results in minimum energy

consumption for the smartphone, however, under heavy server load conditions of dc = 0.01 and

high uplink network traffic congestion conditions of dUL = 0.1, offloading after the DE step

will result in minimum energy consumption for the smartphone, while satisfying the QoE

requirements of (3). In conclusion, the offloading point for feature extraction that results in

minimum energy consumption for the smart device can be easily found and is highly

dependent on the conditions of the smart device, server, and network.

5. Conclusion

Smart devices are optimal platforms for AR applications. In the future, performance

enhancements in smart devices and their cameras will results in more accurate and powerful

AR applications, thereby contributing to the usefulness and popularity of AR services. AR

applications in mobile devices that use database searches for object recognition can benefit

from computational offloading to the AR cloud server, which may lead to increase in battery

life of the smart device and also reduce the AR execution time. In order to benefit from

offloading, it is crucial to determine the appropriate offloading point by taking into account the

varying network and server conditions.

In this paper, offloading the feature extraction process based on SURF for a mobile visual search

AR application has been analyzed. The energy and time constraints have been considered to determine

the optimal offloading point. Results show that various computation points may exist, and through

proper selection a reduction in overall energy consumption of the smart device can be achieved. Partial

execution of the process on the smart device can also decrease the load on the cloud server, thereby

avoiding cloud overloading in processing capability and memory space, which are important during

BDBH periods.

References

[1] Thomas Olsson and Markus Salo, “Online User Survey on Current Mobile Augmented Reality

Applications,” Proc. IEEE ISMAR 2011, pp. 75-84, October 26-29, 2011. Article (CrossRef Link).

[2] K. Kumar and Y. Lu, “Cloud Computing for Mobile Users: Can Offloading Computation Save

Energy?,” Computer, vol. 43, no. 4, pp. 51-56, 2010. Article (CrossRef Link).

[3] B. Girod, V. Chandrasekhar, R. Grzeszczuk, and Y. Reznik, “Mobile Visual Search: Architectures,

Technologies, and the Emerging MPEG Standard,” IEEE Multimedia, vol. 18, no. 3, pp. 86-94,

2011. Article (CrossRef Link).

[4] David Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Computer

Vision, vol. 60, no. 2, pp. 91-110, 2004. Article (CrossRef Link).

[5] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),”

Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, 2008.

Article (CrossRef Link).

http://dx.doi.org/10.1109/ISMAR.2011.6092372
http://dx.doi.org/10.1109/MC.2010.98
http://dx.doi.org/10.1109/MMUL.2011.48
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.cviu.2007.09.014

3102 Chung et al.: Adaptive Cloud Offloading of Augmented Reality Applications

[6] P. Drews, R. de Bem, and A. de Melo, “Analyzing and Exploring Feature Detectors in Images,” in

Proc. of IEEE INDIN 2011, pp. 305-310, 2011. Article (CrossRef Link).

[7] L. Juan and O. Gwun, “A Comparison of SIFT, PCA-SIFT and SURF,” Int. J. of Image Processing,

vol. 3, no. 4, pp. 143-152, 2009. Article (CrossRef Link).

Dr. Jong-Moon Chung received B.S. and M.S. degrees in electronic engineering from

Yonsei University, Seoul, Korea, in 1992 and 1994, respectively, and Ph.D. degree in

electrical engineering from the Pennsylvania State University, University Park, PA, USA, in

1999. Since 2005, he has been a Professor in the School of Electrical & Electronic

Engineering, Yonsei University, Seoul, Republic of Korea (ROK). From 1997 to 1999, he

served as an Assistant Professor and Instructor in the Department of Electrical Engineering,

Pennsylvania State University, University Park. From 2000 to 2005, he was with the School

of Electrical & Computer Engineering, Oklahoma State University (OSU), Stillwater, OK,

USA as a Tenured Associate Professor and Director of the OCLNB and ACSEL labs. His

research is in the area of smartphone design, network scheduler design, M2M, IoT, AR, CR,

SDN, NFV, MANET, VANET, WSN, satellite & mobile communications, and broadband

QoS networking. In 2000 he received the First Place Outstanding Paper Award at the IEEE

EIT 2000 conference. In 2003 and 2004, respectively, he received the Distinguished Faculty

Award and the Technology Innovator Award, both from OSU. As an Associate Professor at

OSU, in October 2005, he received the Regents Distinguished Research Award and in

September the same year he received the Halliburton Outstanding Young Faculty Award. In

2008 he received the Outstanding Accomplishment Professor Award from Yonsei University.

In 2012 he received the ROK Defense Acquisition Program Administration (DAPA) Award.

He is a member of the IET and IEICE and a life member of the HKN, KIIS, IEIE, and KICS.

He has served as the General Co-Chair of IEEE MWSCAS 2011, Local Chair and TPC

Co-Chair of IEEE VNC 2012, and Local Chair of IEEE WF-IoT 2014. He is Co-EiC of the

KSII TIIS and Editor of the IEEE Transactions on Vehicular Technology.

Yong-Suk Park is a managerial researcher at the Contents Convergence Research Center,

Korea Electronics Technology Institute (KETI), Seoul, Korea. Before joining KETI in 2003,

he was with I&C Technology and Samsung S1, where he worked in projects relevant to

wireless networks and system integration. He received his B.S. and M.S. degrees in electrical

and computer engineering from Carnegie Mellon University in 1997 and 1998, respectively.

He is currently working towards a Ph.D. degree in the School of Electrical & Electronic

Engineering from Yonsei University, Seoul, Korea. His current research interests are in the

areas of media sharing and contents delivery networks.

Jong-Hong Park received his B.S. degree from the School of Electrical and Electronic

Engineering, Yonsei University, Seoul, Republic of Korea, in 2010. He is currently a

graduate student in the School of Electrical and Electronic Engineering and a research

member of the Communications and Networking Laboratory at Yonsei University. His

research focuses on AR, Cloud computing and IoT device’s networks.

HyoungJun Cho received his B.S. degree from the School of Electrical and Electronic

Engineering, Yonsei University, Seoul, Republic of Korea, in 2012. He is currently a graduate

student in the School of Electrical and Electronic Engineering and a research member of the

Communications and Networking Laboratory at Yonsei University. His research focuses on

SDN, NFV, AR, mobile, IoT device’s networks and MPTCP.

http://dx.doi.org/10.1109/indin.2011.6034893
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJIP-51

