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Abstract 
 

The accuracy of an augmented reality (AR) application is highly dependent on the resolution 

of the object’s image and the device’s computational processing capability. Naturally, a 

mobile smart device equipped with a high-resolution camera becomes the best platform for 

portable AR services. AR applications require significant energy consumption and very fast 

response time, which are big burdens to the smart device. However, there are very few ways to 

overcome these burdens. Computation offloading via mobile cloud computing has the 

potential to provide energy savings and enhance the performance of applications executed on 

smart devices. Therefore, in this paper, adaptive mobile computation offloading of mobile AR 

applications is considered in order to determine optimal offloading points that satisfy the 

required quality of experience (QoE) while consuming minimum energy of the smart device. 

AR feature extraction based on SURF algorithm is partitioned into sub-stages in order to 

determine the optimal AR cloud computational offloading point based on conditions of the 

smart device, wireless and wired networks, and AR service cloud servers. Tradeoffs in energy 

savings and processing time are explored also taking network congestion and server load 

conditions into account. 
 

 

Keywords: smart devices, augmented reality, cloud offloading, energy optimization, 

performance optimization, quality of experience 
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1. Introduction 

Augmented reality (AR) is an emerging field in information technology in which video 

images taken by a camera are enhanced with computer-generated virtual objects or 

video/audio information in real-time. As shown in Fig. 1, the image of an object may be 

acquired using the built-in camera of a smartphone and processed to obtain additional 

information about the object. This information is made available and presented to the user by 

overlaying it with the real view of the object, thereby augmenting the reality. AR introduces a 

whole new way of human-computer interaction, and it provides endless opportunities for 

applications in diverse fields including, but not limited to, industrial, commercial, and 

entertainment areas. 

Smart devices such as smartphones and tablet computers are ideal platforms for AR 

applications, providing the necessary imaging, sensory, and networking peripherals. Smart 

devices today come equipped with powerful processors, graphic processing units, 

high-resolution cameras and displays, location sensors, and high-speed wireless network 

interfaces. As smart devices are becoming a popular and reasonably priced commodity, the 

number of AR applications and their users is expected to rapidly increase within a few years 

[1]. At the same time, AR applications can greatly enhance mobile user experience by serving 

as an interface itself, making mobile search transparent to the user and reduce search efforts. 

AR requires little interaction from the user since the smart device senses and analyzes the 

surroundings and provides location based or context sensitive information in real-time. 

Even though smart devices are seeing an overall performance increase, they are still 

incomparable to desktop computers and servers in terms of performance capacity. Many 

applications, AR applications inclusive, are still computationally intensive to be fully 

supported on a smart device. In addition, the specification and performance increase in smart 

devices consequently has imposed more stringent energy consumption constraints on these 

battery-powered devices. Recently, mobile cloud computing has emerged to fill this gap in 

performance and save energy [2]. In mobile cloud computing, smart devices make use of 

external resources accessible via wireless networks. Computationally intensive tasks are 

offloaded to the cloud server instead of being processed locally on the mobile device. 

Offloading is the process of loading or transferring a section of application execution to more 

powerful processing platforms such as servers or clouds. Offloading can potentially save both 

energy and time for completing a given task on the mobile device. 

In AR, mobile visual search (MVS) applications in particular can benefit from mobile 

cloud offloading. MVS is based on object recognition. MVS performs visual search in which 

the data obtained from the image queried is compared and matched against a database of 

images. The database used for visual search is quite massive and cannot be located locally on 

the smart device due to memory constraints. Therefore, the database needs to reside on the 

server side and offloading becomes essential for MVS applications. MVS involves extensive 

search and matching for comparison. Therefore, algorithms and tasks involved in MVS are 

also computationally intensive, which affects the battery power consumption of the mobile 

device [3]. Offloading may decrease the processing load of mobile devices and save energy, 

and consequently, it can extend the use time and battery lifetime of the mobile device. 

Although computational offloading provides certain benefits to MVS applications, it may 

not always be beneficial to offload from the user experience point of view. If the network is 
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congested or if the cloud server is overloaded or unreachable, the incurred processing delay at 

the AR cloud server could result in an annoying or intolerable user experience. The amount of 

mobile network traffic and the load on cloud servers have busy day and busy hour (BDBH) 

periods that result in significant fluctuations in processing speed and delay time. Some of these 

variations have patterns that are predictable, but many are not. Therefore, real-time delay 

factors that affect user experience, such as mobile network traffic conditions and AR cloud 

server status, need to be taken into account when offloading decisions are made. This is why 

adaptable computation offloading control is necessary and can be very effective. Previous 

works related to computational offloading focus on either maximizing energy savings or 

optimizing mobile application responsiveness. In order to be truly useful, focus should be 

given in maximizing user experience, balancing energy and time savings accordingly under 

the given conditions and circumstances. 

In this paper, mobile computation offloading of MVS AR applications is considered, 

taking into account varying network traffic and server conditions. In the following sections, 

tradeoffs between computation time, efficiency, and mobile device energy savings are 

analyzed. The goal is to determine potential and optimal mobile offloading points under given 

conditions and priorities that satisfy user quality of experience (QoE) and provide device 

energy savings. 
 

 

Fig. 1. AR application based on MVS where context-sensitive information is displayed on the 

smartphone’s screen after receiving the associated information from the AR cloud server 
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2. Mobile Visual Search 

In this section, the MVS AR application and its analysis method are explained. The basic steps 

involved in MVS are shown in Fig. 1. MVS applications use the smart device’s built-in camera 

in order to acquire a snapshot picture or motion video image of the scenery or object. Images 

are not compared pixel-by-pixel for object recognition. Instead, distinct characteristics called 

“features” are extracted from the snapshot. Pictures may be taken from different angles, 

distances, or lighting conditions. Therefore, features extracted should be robust against scale 

(i.e., different sizes), rotation, illumination, or viewpoint in order to be useful for visual search. 

Extracting features makes data to be processed smaller and more manageable as well. The 

extracted features are then compared to other sets of features previously stored in a database. 

Based on the number of feature matches in common, a set of candidate images is selected from 

the database. Geometric verification is further performed on the selected images to verify that 

the matching features between the two images being compared are consistent with changes in 

viewpoints. If two images are determined to be the same, additional information associated 

with the feature is retrieved and provided to the user. For example, when a snapshot of a 

product is taken, the product is identified by the MVS application by finding matching product 

features from the database. Once identified, information associated with the product such as 

price, manufacturer, contents, etc. can be retrieved and provided to the user. The retrieved 

information may be in any format the application chooses it to be. The information may be in 

text format and presented to the user by overlaying it on top of the original image. If a scenery 

image is taken at a tourist site, video clips or voice guides may be provided. The possibilities 

of creating diverse applications using AR on smart devices are virtually endless.  

Although it is possible to process all the MVS steps on the smart device, due to excessive 

energy consumption, it is preferable to partition the tasks between the mobile client and AR 

cloud server as seen in Fig. 1. Image acquisition and feature extraction take place on the 

mobile smart device since the image needs to be acquired at the user’s location. Extracting the 

features of the image and transmitting them over the network also reduces the payload size 

compared to transmitting the original image captured. Feature matching and verification 

against the database takes place on the cloud server since most visual search databases are too 

memory intensive to be supported on the mobile smart device. 

The key MVS process performed on the smart device’s platform is feature extraction. As 

previously mentioned, the features extracted for object recognition need to be robust enough to 

match images of different scales, rotations, and viewpoints. Many different algorithms for 

feature detection and description have been developed over the years, the best known being 

Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). SIFT 

uses difference of Gaussian and the Gaussian pyramid to find features [4]. SURF makes use of 

Hessian blobs and uses box filters instead of Gaussian kernels to simplify and speed up 

computation [5].  

The theoretical complexity of SIFT and SURF is (O(mn + k)) where m and n represent the 

width and height of the image (both in units of pixels), respectively, and k represents the 

number of key points or interest points [6]. Interest points are the distinctive features of the 

image. The theoretical complexity of SIFT and SURF imply that the computation increases 

linearly with the dimensions or size of the image to be processed. As smart devices evolve, 

higher resolution cameras and displays will be at the user’s disposal, processing ultra-high 

resolution images ranging from 8 to 20 megapixels. The introduction of ultra-high resolution 

images enables accurate AR feature identification, but at the same time this creates a huge 

burden in terms of processing data for MVS AR applications. Therefore, computation for 
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feature extraction on the smart device will significantly increase. Sending vast amounts of data 

over a wireless link for visual image search may congest the network. Processing the offloaded 

data on the server will also take more time and resources. In the process, the energy 

consumption of the mobile device will also increase due to possible retransmissions and 

timeouts. Therefore, it is important to determine the optimal offloading point for feature 

extraction that can balance the load between the cloud server and the smart device. 

In this paper, the optimal offloading point within the SURF feature extraction process is 

investigated to achieve further performance enhancement and energy savings on the mobile 

device when performing MVS. SIFT provides the best results, but SURF produces good 

matching performance at a faster, reduced computational complexity [7]. Therefore, for the 

purposes of this paper, SURF is used for the evaluation of feature extraction offloading. 

 

 
Fig. 2. Process steps involved in feature extraction based on SURF 

 

Fig. 2 shows SURF feature extraction subdivided into six steps. The step-1 Grayscale Image 

Generation (GIG) process changes the original JPEG image captured by the device into a gray 

valued image in order to make it robust to color modifications. The step-2 Integral Image 

Generation (IIG) process builds an integral image from the grayscale image which allows fast 

calculation of summations over image sub-regions. The step-3 Response Map Generation 

(RMG) process constructs the scale-space in order to detect interest points using the 

determinant of the image’s Hessian matrix. Using the scale response maps generated in the 

previous stage, the maxima and minima (which are used as the actual interest points) are 

detected during the Interest Point Detection (IPD) in step-4. In order to achieve invariance to 

image rotation, each detected interest point is assigned a reproducible orientation in the 

Orientation Assignment (OA) process in step-5. This orientation provides rotation invariance. 

The step-6 Descriptor Extraction (DE) is the process where an interest point is uniquely 

identified to be distinguished from other interest points. In terms of computation, GIG and IIG 

are trivial while IPD is the most complex among the steps. The processes after step-6 have to 

be executed at the AR cloud server, and the final AR information will be returned to the smart 

device for display.  
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The input and output data file sizes (in units of bits) at each step is also shown in Fig. 2. H, 

W, and I represent the image height, image width, and number of interest points, respectively. 

It shows that the output data size at each step is dependent on the size of the image queried. 

The output data size increases in relation to the increasing image resolution. The output data 

size is dependent on the type of image, since the number of interest points detected varies 

depending on the image being processed. If an image has many interest points, the output data 

size increases. GIG, IIG, RMG, and IPD process the image on a pixel-by-pixel basis, so these 

stages are dependent on the size of the image (i.e., H and W), while OA and DE are also 

dependent on the number of interest points detected (i.e., I) in addition to H and W. GIG 

outputs a 32-bit grayscale image of the query image, and since each pixel is represented as 32 

bits, the output data size becomes W x H x 32 bits. IIG generates a 32-bit integral image from 

the grayscale image generated by GIG. Since each pixel of the integral image is also 

represented as 32 bits, the size of the resulting integral image is W x H x 32 bits. The integral 

image is used by RMG to create scale spaces, where the scale space is divided into octaves 

which represent a series of filter response maps. Octaves encompass a scaling factor of 2, so 

the size of the filter corresponding to the image is divided by 2 at each subsequent scale (i.e., H 

and W are divided by 2 at each subsequent scale). The number of octaves may vary based on 

the settings, where in this particular example, 4 octaves are used. For the first octave, the scale 

space is constructed for 4 filter sizes (9x9, 15x15, 21x21, and 27x27), which is represented as 

4(W/2 x H/2) in the output equation for RMG in Fig. 2. For the second octave, a scale space is 

constructed for 2 filter sizes (39x39 and 51x51), which is represented as 2(W/4 x H/4). For the 

third octave, the scale space is constructed for filter sizes of 75x75 and 99x99, which is 

represented as 2(W/8 x H/8), and for the fourth octave, the scale space is constructed for filter 

sizes of 147x147 and 195x195, which is represented as 2(W/16 x H/16). The constructed scale 

space is used to detect interest points in the IPD stage, where the detected interest points are 

represented as a vector in rectangular coordinates of x and y. The output of the IPD stage 

includes the x and y vector coordinates of each of the I detected interest points along with the 

IIG file, which are sent to the OA stage. The OA process computes the orientation information 

which is saved as a vector along with the x and y coordinates. The output of the OA stage 

contains the orientation information of each of the I detected interest points along with the IIG 

file, which are sent to the DE stage. The DE process generates a descriptor vector of length 64 

for each interest point, which results in a size of 64 x 32 bits x I. Each element of the descriptor 

vector represents an intensity pattern that preserves spatial information of the interest point. 

3. Offloading Point Decision 

The size of the data to be transmitted varies depending on the offloading point. The objective 

is to select an offload point that can save energy and satisfy user QoE requirements (i.e., time 

bounded performance requirements). In this section, the basic offloading scenario for feature 

extraction process is defined. Fig. 3 shows the possible offloading switching points between 

the smart device and the AR cloud server. The smart device offloads by transmitting the output 

data at step-S (ranging from step-1 to step-6 in SURF) to the AR cloud server. If S < 6, the 

cloud server will carry on the feature extraction processes on behalf of the smart device 

beginning at step-S+1. If offloading takes place, the server will execute the remaining feature 

extraction process until completion, all the way to the final step SF, corresponding to step-6 DE 

(i.e., SF = 6 in SURF). The amount of data processing at step-n is represented as n  (in units of 

bits). Therefore, the total feature extraction data processing by the smart device can be 

represented as the summation of 1  to S , and the total feature extraction data processing by 
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the cloud server can be represented as the summation of 1S  to 
FS , as presented in Fig. 3. 

 
Fig. 3. Computation offloading example based on several SURF feature extraction process steps 

between the smart device and the cloud server 

 

Fig. 4. Total time required for MVS AR application when mobile cloud offloading is used 

 

Fig. 4 shows the overall time involved in mobile cloud offloading TAR (in units of seconds), 

for the MVS AR application. TM represents the time required by the smart device. This is the 

feature extraction process time spent by the smart device before offloading at step-S. The 

smart device needs to transmit offloading data and receive MVS results over the wireless link. 

The overhead in time incurred for transmission (uplink) and reception (downlink) are TUL and 

TDL, respectively. Additional overhead is incurred by data traversing various routers and 

switches within the wired network, which is represented by TRS. TC represents the time spent 

by the cloud server in performing the offloaded feature extraction from step-S+1. TDB 

represents the time spent by the cloud server to search and identify matching features in the 

AR database.  
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Table 1. Computation offloading parameters 

Parameter Units Description 

αn bits 

Data processed at step-n of feature extraction. Computed based 

on measured code execution time (s), CPU frequency (Hz), and 

amount of data the CPU can process in a cycle (bits). 

vm bits/s 
Maximum CPU processing speed of mobile smart device. 

Obtained from device specification. 

dm 
Normalized 

0 ≤ dm ≤ 1 

Delay influence factor of mobile smart device. Computed based 

on monitoring device CPU usage statistics (e.g. top command). 

vc bits/s 
Maximum CPU processing speed of cloud server. Obtained from 

server specification. 

dc 
Normalized 

0 ≤ dc ≤ 1 

Delay influence factor of cloud server. Computed based on 

monitoring server CPU usage statistics. The server provides 

updates of dc to the device periodically. 

TDB(I, H, 

W) 
s 

Function that returns the AR database access time. Takes number 

of interest points (I), image height (H) and width (W) as 

parameters. Value estimated based on previous measurements of 

database query and processing time. 

F(S) bits 

Output data to be sent uplink to the cloud server at offloading step 

S. The size of data transmitted varies depending on the size of the 

input data and offloading step S. 

FF bits 
Final result data returned by the server in downlink to the smart 

device. Variable size data depending on the information returned. 

RUL bits/s 
Maximum data rate for uplink. Varies depending on the current 

communication link used. 

dUL 
Normalized 

0 ≤ dUL ≤ 1 

Delay influence factor for uplink. Measured using traceroute 

tool. The first hop is considered as wireless link and its delay 

measurements are used. 

RDL bits/s 
Maximum data rate for downlink. Varies depending on the 

current communication link used. 

dDL 
Normalized 

0 ≤ dDL ≤ 1 
Delay influence factor for downlink. 

TRS s Network traversing delay. Measured using traceroute tool. 

TQoE s 

Maximum service response time expected or tolerable by the 

user. Variable value depending on service and application based 

on user feedback. 

ε J/bit 

Mobile device energy consumption parameter.  

ε = Power Measured (W) * Operation Time (s) / Code Executed 

(bits) 

PUL W 
Power consumption during uplink. Measured using power meter 

connected to the smart device’s battery. 

PDL W 
Power consumption during downlink. Measured using power 

meter connected to the smart device’s battery. 

 

The time can be further detailed as the amount of data divided by the data processing speed. 

Table 1 lists the detailed computation offloading parameters involved. Feature extraction 
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processing time at the smart device can be obtained from 


S

n
n

mmvd 1

1
 , which is based on the 

total data processed by the smart device (i.e., summation of 1  to S ) divided by the smart 

device’s parameters vm and dm. The delay influence factor dm is normalized as 0  dm  1 in 

which dm=1 results in no delay and dm=0 results in infinite delay. Other delay influence factors 

that need to be considered in this analysis are dc for the cloud server, dUL for uplink, and dDL for 

downlink, all of which are defined the same way as dm. The feature extraction processing time 

at the server can be obtained from 


FS

Sn
n

ccvd 1

1
 , which is based on the total data processed by 

the server (i.e. summation of 1S  to 
FS ) divided by the cloud server’s parameters vc and dc. 

TDB(I,H,W) represents the time required by the AR database. The time consumed over the 

wireless network is 
ULUL Rd

SF )(
 for uplink and 

DLDL

F

Rd

F
 for downlink, where F(S) and FF 

represent the amount of data sent uplink and downlink, respectively. Commonly, FF < F(S) 

since FF only consists of the final results, such as AR information of the extracted features and 

position information on where to place this information on the image. 

The total time required for the AR application TAR is upper bounded by the required QoE 

time TQoE. Since TAR must be less than or equal to TQoE, equation (1) becomes the constraint of 

the energy minimizing adaptive offloading point control process.  
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The energy consumed by the smart device ESD (based on offloading feature extraction at 

step S) involves the energy for processing up to step S, the energy for transmitting the output 

file of step S, and the energy to receive the results from the cloud server. The energy for 

processing up to step S can be obtained by multiplying the smart device’s energy consumption 

parameter ε to the process bit amount 


S

n
n

1

 . The energy for transmission of output and 

reception of results can be obtained by considering the power consumption parameters PUL for 

uplink and PDL for downlink respectively multiplied to the time durations of 
ULUL Rd

SF )(
 for 

uplink and 
DLDL

F

Rd

F
 for downlink. Therefore, ESD can be represented as in (2). 

DLDL

F
DL

ULUL
UL

S

n
nSD
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P
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As transmission requires more power compared to reception (i.e., PDL < PUL) and since the 

intermediate data transmitted for feature extraction is much larger than the result data returned 

by the cloud server (i.e., FF < F(S)). Considering the influence of both of these inequalities, it 

is safe to assume that 
ULUL

UL
DLDL

F
DL

Rd

SF
P

Rd

F
P

)(
 . For the analysis in this paper, the term 

DLDL

F
DL

Rd

F
P  will be neglected for simplification. 
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4. Experiments & Performance Analysis 

In this section, a performance analysis of the AR experiments conducted on smartphones is 

presented. If only energy consumption is considered, the processing time may increase 

significantly, affecting the performance of the AR process and leading to an unbearable time 

delay for the user. Therefore, an execution time limit needs to be imposed when attempting to 

minimize the energy consumption of the smart device. Therefore the time requirement of (1) 

and the energy consumption profile of (2) are used together in determining the offloading 

point that consumes the least amount of energy for the smart device while satisfying the QoS 

requirements. For this analysis, first (1) is organized in terms of 


S

n
n

1

  and the inequality is 

inserted into (2), to obtain the energy upper bound (EBound) of ESD(S) presented in (3). 
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vdP
ESE

F
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1


       (3) 

 

Based on constraint (3), the value of S that results in the minimum ESD(S) value can be 

obtained.  

For each MVS iteration, the adaptive computation offloading process shown in Fig. 5 is 

performed. First, all the relevant parameters are gathered. The parameters are computed and 

updated as summarized in Table 1. Then for all possible offloading switching points S, the 

corresponding ESD and EBound are computed. The switching point S that satisfies the constraint 

ESD ≤ EBound and gives the maximum energy savings (i.e., minimum EBound) is selected as the 

offload point. If no S satisfies the constraint (i.e., ESD > EBound), the S with minimum ESD is 

selected. Local computation of feature extraction is done up to step S, and computation 

offloading is performed at step S+1. 
 

 
Fig. 5. Flow chart of adaptive computation offloading process. 

 

Experiments were conducted based on actual measurements using a Nexus One 

(HTC-PB99400) smartphone where a desktop PC server was used to emulate the AR cloud 

server and database, as shown in Fig. 6. The Nexus One smart device runs on Android 2.3 and 

has a 1 GHz CPU, 480x800 display resolution, and 5 Mpixel rear camera. The desktop server 

uses a Windows operating system with an Intel Core2 Quad CPU 2.50 GHz and 4 GB of RAM. 

Images of varying resolutions of 640x480, 1024x768, and 1280x960 were tested in the AR 

process to measure the energy consumption and processing time. The measured values were 

divided by the number of pixels and interest points, and their average and standard deviation 

values were used in the performance analysis. The average energy per bit consumed by the 

feature extraction process on the smartphone was measured to be ε = 0.0011 J/bit. Statistical 

analysis was also performed on the network traffic data sampled for delay influence factor 

computation. The Kolmogorov-Smirnov (K-S) test was used to verify the probability 

distribution function (PDF) of the measured data. The K-S test can be used to compare a 

sample with a reference probability distribution. For each empirical distribution of the 

measured data and the cumulative distribution function (CDF) of the candidate distribution, 

values of distance  nnD /11.012.0    and significance level 





1

21 22

)1(2
i

nii e   are 
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calculated, where n is the number of measurements and ε is the maximum difference between 

the empirical data and the CDF of the candidate distribution. The distribution with the smallest 

D and the largest α is considered as the proper distribution of the measured data. Test results 

show that the measured data comes from a normal distribution. 
 

 
Fig. 6. Experiment setup showing Nexus One smartphone, power meter connections, and PC server as 

the emulated AR cloud server and database 

 

 
(a)                                                              (b) 

Fig. 7. Experiment results: (a) energy consumed when offloading; (b) minimum energy offloading 

points that satisfy (3) for SURF feature extraction process steps depending on uplink delay and server 

congestion 
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The experiment measurement results were compared to the resulting values of (1), (2), and 

(3), which confirmed an accurate match. Fig. 7-(a) compares ESD(S) and EBound based on dc = 

0.01 and dUL = 1. In Fig. 7-(a), among the points that satisfy (3) (i.e., ESD  EBound), the 

minimum energy consuming step-S can be found. By extending this method for various 

parameter combinations, a comprehensive view of the experimental results is presented in Fig. 

7-(b). Fig. 7-(b) presents the optimal offloading points based on a variety of dc and dUL 

conditions. The graph shows that even under poor network or server conditions there are 

varying points in time where it is more effective to offload rather than execute the entire 

feature extraction process on the smart device. For instance, given server load dc = 0.1 and 

maximum upload throughput dUL = 1, offloading after the GIG step results in minimum energy 

consumption for the smartphone, however, under heavy server load conditions of dc = 0.01 and 

high uplink network traffic congestion conditions of dUL = 0.1, offloading after the DE step 

will result in minimum energy consumption for the smartphone, while satisfying the QoE 

requirements of (3). In conclusion, the offloading point for feature extraction that results in 

minimum energy consumption for the smart device can be easily found and is highly 

dependent on the conditions of the smart device, server, and network. 

5. Conclusion 

Smart devices are optimal platforms for AR applications. In the future, performance 

enhancements in smart devices and their cameras will results in more accurate and powerful 

AR applications, thereby contributing to the usefulness and popularity of AR services. AR 

applications in mobile devices that use database searches for object recognition can benefit 

from computational offloading to the AR cloud server, which may lead to increase in battery 

life of the smart device and also reduce the AR execution time. In order to benefit from 

offloading, it is crucial to determine the appropriate offloading point by taking into account the 

varying network and server conditions. 

In this paper, offloading the feature extraction process based on SURF for a mobile visual search 

AR application has been analyzed. The energy and time constraints have been considered to determine 

the optimal offloading point. Results show that various computation points may exist, and through 

proper selection a reduction in overall energy consumption of the smart device can be achieved. Partial 

execution of the process on the smart device can also decrease the load on the cloud server, thereby 

avoiding cloud overloading in processing capability and memory space, which are important during 

BDBH periods. 
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