• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.027 seconds

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Prototype-based Classifier with Feature Selection and Its Design with Particle Swarm Optimization: Analysis and Comparative Studies

  • Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.245-254
    • /
    • 2012
  • In this study, we introduce a prototype-based classifier with feature selection that dwells upon the usage of a biologically inspired optimization technique of Particle Swarm Optimization (PSO). The design comprises two main phases. In the first phase, PSO selects P % of patterns to be treated as prototypes of c classes. During the second phase, the PSO is instrumental in the formation of a core set of features that constitute a collection of the most meaningful and highly discriminative coordinates of the original feature space. The proposed scheme of feature selection is developed in the wrapper mode with the performance evaluated with the aid of the nearest prototype classifier. The study offers a complete algorithmic framework and demonstrates the effectiveness (quality of solution) and efficiency (computing cost) of the approach when applied to a collection of selected data sets. We also include a comparative study which involves the usage of genetic algorithms (GAs). Numerical experiments show that a suitable selection of prototypes and a substantial reduction of the feature space could be accomplished and the classifier formed in this manner becomes characterized by low classification error. In addition, the advantage of the PSO is quantified in detail by running a number of experiments using Machine Learning datasets.

An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop Scheduling Problems

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.151-160
    • /
    • 2013
  • In the past decades, several algorithms based on evolutionary approaches have been proposed for solving job shop scheduling problems (JSP), which is well-known as one of the most difficult combinatorial optimization problems. Most of them have concentrated on finding optimal solutions of a single objective, i.e., makespan, or total weighted tardiness. However, real-world scheduling problems generally involve multiple objectives which must be considered simultaneously. This paper proposes an efficient particle swarm optimization based approach to find a Pareto front for multi-objective JSP. The objective is to simultaneously minimize makespan and total tardiness of jobs. The proposed algorithm employs an Elite group to store the updated non-dominated solutions found by the whole swarm and utilizes those solutions as the guidance for particle movement. A single swarm with a mixture of four groups of particles with different movement strategies is adopted to search for Pareto solutions. The performance of the proposed method is evaluated on a set of benchmark problems and compared with the results from the existing algorithms. The experimental results demonstrate that the proposed algorithm is capable of providing a set of diverse and high-quality non-dominated solutions.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Sensor array optimization techniques for exhaled breath analysis to discriminate diabetics using an electronic nose

  • Jeon, Jin-Young;Choi, Jang-Sik;Yu, Joon-Boo;Lee, Hae-Ryong;Jang, Byoung Kuk;Byun, Hyung-Gi
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.802-812
    • /
    • 2018
  • Disease discrimination using an electronic nose is achieved by measuring the presence of a specific gas contained in the exhaled breath of patients. Many studies have reported the presence of acetone in the breath of diabetic patients. These studies suggest that acetone can be used as a biomarker of diabetes, enabling diagnoses to be made by measuring acetone levels in exhaled breath. In this study, we perform a chemical sensor array optimization to improve the performance of an electronic nose system using Wilks' lambda, sensor selection based on a principal component (B4), and a stepwise elimination (SE) technique to detect the presence of acetone gas in human breath. By applying five different temperatures to four sensors fabricated from different synthetic materials, a total of 20 sensing combinations are created, and three sensing combinations are selected for the sensor array using optimization techniques. The measurements and analyses of the exhaled breath using the electronic nose system together with the optimized sensor array show that diabetic patients and control groups can be easily differentiated. The results are confirmed using principal component analysis (PCA).

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Reconfigurable Intelligent Surface assisted massive MIMO systems based on phase shift optimization

  • Xuemei Bai;Congcong Hou;Chenjie Zhang;Hanping Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.2027-2046
    • /
    • 2024
  • Reconfigurable Intelligent Surface (RIS) is an innovative technique to precisely control the phase of incident signals with the help of low-cost passive reflective elements. It shows excellent potential in the sixth generation of mobile communication systems, which not only extends wireless coverage but also boosts channel capacity. Considering that multipath propagation and a high number of antennas are involved in RIS in assisted mega multiple-input multiple-output (MIMO) systems, it suffers from severe channel fading and multipath effects, which in turn lead to signal instability and degradation of transmission performance. To overcome this obstacle, this essay suggests an improved gradient optimization algorithm to dynamically and optimally adjust the phase of the reflective elements to counteract channel fading and multipath effects as a strategy. In order to overcome the optimization problem of falling into local minima, this paper proposes an adaptive learning rate algorithm based on Adagrad improvement, which searches for the global optimal solution more efficiently and improves the robustness of the optimization algorithm. The suggested technique helps to enhance the estimate of channel efficiency of RIS-assisted large MIMO systems, according to simulation results.

Application of Collaborative Optimization Using Genetic Algorithm and Response Surface Method to an Aircraft Wing Design

  • Jun Sangook;Jeon Yong-Hee;Rho Joohyun;Lee Dong-ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.133-146
    • /
    • 2006
  • Collaborative optimization (CO) is a multi-level decomposed methodology for a large-scale multidisciplinary design optimization (MDO). CO is known to have computational and organizational advantages. Its decomposed architecture removes a necessity of direct communication among disciplines, guaranteeing their autonomy. However, CO has several problems at convergence characteristics and computation time. In this study, such features are discussed and some suggestions are made to improve the performance of CO. Only for the system level optimization, genetic algorithm is used and gradient-based method is used for subspace optimizers. Moreover, response surface models are replaced as analyses in subspaces. In this manner, CO is applied to aero-structural design problems of the aircraft wing and its results are compared with the multidisciplinary feasible (MDF) method and the original CO. Through these results, it is verified that the suggested approach improves convergence characteristics and offers a proper solution.

An integrated particle swarm optimizer for optimization of truss structures with discrete variables

  • Mortazavi, Ali;Togan, Vedat;Nuhoglu, Ayhan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.359-370
    • /
    • 2017
  • This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.