• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.033 seconds

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

A design of fuzzy pattern matching classifier using genetic algorithms and its applications (유전 알고리즘을 이용한 퍼지 패턴 매칭 분류기의 설계와 응용)

  • Jung, Soon-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.87-95
    • /
    • 1996
  • A new design scheme for the fuzzy pattern matching classifier (FPMC) is proposed. in conventional design of FPMC, there are no exact information about the membership function of which shape and number critically affect the performance of classifier. So far, a trial and error or heuristic method is used to find membership functions for the input patterns. But each of them have limits in its application to the various types of pattern recognition problem. In this paper, a new method to find the appropriate shape and number of membership functions for the input patterns which minimize classification error is proposed using genetic algorithms(GAs). Genetic algorithms belong to a class of stochastic algorithms based on biological models of evolution. They have been applied to many function optimization problems and shown to find optimal or near optimal solutions. In this paper, GAs are used to find the appropriate shape and number of membership functions based on fitness function which is inversely proportional to classification error. The strings in GAs determine the membership functions and recognition results using these membership functions affect reproduction of next generation in GAs. The proposed design scheme is applied to the several patterns such as tire tread patterns and handwritten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM (GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법)

  • 김민정;석수영;김광수;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.512-522
    • /
    • 2002
  • In this paper, we propose a hybrid method which is mixed with frame selection and weighting model rank method, based on GMM(gaussian mixture model), for real-time text-independent speaker recognition system. In the system, maximum likelihood estimation was used for GMM parameter optimization, and maximum likelihood was used for recognition basically Proposed hybrid method has two steps. First, likelihood score was calculated with speaker models and test data at frame level, and the difference is calculated between the biggest likelihood value and second. And then, the frame is selected if the difference is bigger than threshold. The second, instead of calculated likelihood, weighting value is used for calculating total score at each selected frame. Cepstrum coefficient and regressive coefficient were used as feature parameters, and the database for test and training consists of several data which are collected at different time, and data for experience are selected randomly In experiments, we applied each method to baseline system, and tested. In speaker recognition experiments, proposed hybrid method has an average of 4% higher recognition accuracy than frame selection method and 1% higher than W method, implying the effectiveness of it.

  • PDF

A Case Study of BIM-based Framework on Constructability Tasks (BIM기반 골조공사의 시공성분석 업무 적용사례에 관한 연구)

  • Lee, Seung-Il;Kwon, Nam-Ha;Cho, Young-Sang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.45-54
    • /
    • 2010
  • Recently more and more construction projects have become high-rise, complex and intelligent. Accordingly, such projects require an integrated management system for tasks, with a lean approach to construction with work processes for management and productivity. In particular, Construction Information Technology (CIT) fields are concerned with Building Information Modeling (BIM), which represents the process of generating and managing building data during its life cycle. Constructability research has progressed for the project goal which is a cost-time-quality of optimization by integrated construction knowledge and experience. However, the current constructability process has not been performed efficiently, as the existing 2D drawings and papers lack consistent and accurate information, it is difficult to share the contents of work, and the use of information is inefficient. This study proposes that the reformation and enhancement of BIM-based constructability work process can lead to brilliant performance in the framework of the construction phase through achieving collaboration between the design team and the workers at the site.

Transmitting Devices Selection Based on Viewpoint Popularity for Wireless Free-Viewpoint Video Streaming (무선 자유시점 비디오 스트리밍에서 인기도 기반 전송 기기 선택 기법)

  • Koo, Jae-Woo;Cho, Young-Jong;Kang, Kyungran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.546-554
    • /
    • 2016
  • Free-viewpoint video (FVV) is a synthesization technology that generates a virtual viewpoint video using multiple videos recorded via wireless devices at heterogeneous locations. In order to introduce a new service that grafts the FVV onto the real-time streaming service using wireless devices, we need to overcome several constraints. Two main factors of those constraints are the limited wireless capacity that are shared fairly by multiple devices, and the transmission time constraint with which live streaming services have to comply. Therefore, for optimal quality of entire videos, a set of transmitting devices should be effectively selected depending on the condition of wireless channel and the required video popularity of specific viewpoint requested from users. For optimal selection, this study proposes a heuristic algorithm that takes into account the aforementioned factors from possible wireless transmission error behaviors and the requested viewpoint popularity. Through analysis and simulation, we show that with this algorithm, quality of most popular viewpoint videos is guaranteed. Furthermore, performance comparison against the existing scheme which is based only on the location of recording devices is made.

A Study on Configuration Optimization for Rotorcraft Fuel Cells based on Neural Network (인공신경망을 이용한 연료셀 형상 최적화 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • Crashworthy fuel cells have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel cells to prevent most fatality due to post-crash fire. Foreign manufacturers have followed their long term experience to develop their fuel cells, and have reflected the results of crash impact tests on the trial-and-error based design and manufacturing procedures. Since the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. In the present study a number of numerical simulations on fuel cell crash impact tests are performed with a crash simulation software, Autodyn. The resulting equivalent stresses are further analysed to evaluate a number of appropriate design parameters and the artificial neural network and simulated annealing method are simultaneously implemented to optimize the crashworthy performance of fuel cells.

Evaluation of extreme rainfall estimation obtained from NSRP model based on the objective function with statistical third moment (통계적 3차 모멘트 기반의 목적함수를 이용한 NSRP 모형의 극치강우 재현능력 평가)

  • Cho, Hemie;Kim, Yong-Tak;Yu, Jae-Ung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.545-556
    • /
    • 2022
  • It is recommended to use long-term hydrometeorological data for more than the service life of the hydraulic structures and water resource planning. For the purpose of expanding rainfall data, stochastic simulation models, such as Modified Bartlett-Lewis Rectangular Pulse (BLRP) and Neyman-Scott Rectangular Pulse (NSRP) models, have been widely used. The optimal parameters of the model can be estimated by repeatedly comparing the statistical moments defined through a combination of parameters of the probability distribution in the optimization context. However, parameter estimation using relatively small observed rainfall statistics corresponds to an ill-posed problem, leading to an increase in uncertainty in the parameter estimation process. In addition, as shown in previous studies, extreme values are underestimated because objective functions are typically defined by the first and second statistical moments (i.e., mean and variance). In this regard, this study estimated the parameters of the NSRP model using the objective function with the third moment and compared it with the existing approach based on the first and second moments in terms of estimation of extreme rainfall. It was found that the first and second moments did not show a significant difference depending on whether or not the skewness was considered in the objective function. However, the proposed model showed significantly improved performance in terms of estimation of design rainfalls.

Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models (DeepLabV3+와 Swin Transformer 모델을 이용한 Sentinel-2 영상의 구름탐지)

  • Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Youn, Youjeong;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1743-1747
    • /
    • 2022
  • Sentinel-2 can be used as proxy data for the Korean Compact Advanced Satellite 500-4 (CAS500-4), also known as Agriculture and Forestry Satellite, in terms of spectral wavelengths and spatial resolution. This letter examined cloud detection for later use in the CAS500-4 based on deep learning technologies. DeepLabV3+, a traditional Convolutional Neural Network (CNN) model, and Shifted Windows (Swin) Transformer, a state-of-the-art (SOTA) Transformer model, were compared using 22,728 images provided by Radiant Earth Foundation (REF). Swin Transformer showed a better performance with a precision of 0.886 and a recall of 0.875, which is a balanced result, unbiased between over- and under-estimation. Deep learning-based cloud detection is expected to be a future operational module for CAS500-4 through optimization for the Korean Peninsula.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Anomaly Detection for User Action with Generative Adversarial Networks (적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법)

  • Choi, Nam woong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.43-62
    • /
    • 2019
  • At one time, the anomaly detection sector dominated the method of determining whether there was an abnormality based on the statistics derived from specific data. This methodology was possible because the dimension of the data was simple in the past, so the classical statistical method could work effectively. However, as the characteristics of data have changed complexly in the era of big data, it has become more difficult to accurately analyze and predict the data that occurs throughout the industry in the conventional way. Therefore, SVM and Decision Tree based supervised learning algorithms were used. However, there is peculiarity that supervised learning based model can only accurately predict the test data, when the number of classes is equal to the number of normal classes and most of the data generated in the industry has unbalanced data class. Therefore, the predicted results are not always valid when supervised learning model is applied. In order to overcome these drawbacks, many studies now use the unsupervised learning-based model that is not influenced by class distribution, such as autoencoder or generative adversarial networks. In this paper, we propose a method to detect anomalies using generative adversarial networks. AnoGAN, introduced in the study of Thomas et al (2017), is a classification model that performs abnormal detection of medical images. It was composed of a Convolution Neural Net and was used in the field of detection. On the other hand, sequencing data abnormality detection using generative adversarial network is a lack of research papers compared to image data. Of course, in Li et al (2018), a study by Li et al (LSTM), a type of recurrent neural network, has proposed a model to classify the abnormities of numerical sequence data, but it has not been used for categorical sequence data, as well as feature matching method applied by salans et al.(2016). So it suggests that there are a number of studies to be tried on in the ideal classification of sequence data through a generative adversarial Network. In order to learn the sequence data, the structure of the generative adversarial networks is composed of LSTM, and the 2 stacked-LSTM of the generator is composed of 32-dim hidden unit layers and 64-dim hidden unit layers. The LSTM of the discriminator consists of 64-dim hidden unit layer were used. In the process of deriving abnormal scores from existing paper of Anomaly Detection for Sequence data, entropy values of probability of actual data are used in the process of deriving abnormal scores. but in this paper, as mentioned earlier, abnormal scores have been derived by using feature matching techniques. In addition, the process of optimizing latent variables was designed with LSTM to improve model performance. The modified form of generative adversarial model was more accurate in all experiments than the autoencoder in terms of precision and was approximately 7% higher in accuracy. In terms of Robustness, Generative adversarial networks also performed better than autoencoder. Because generative adversarial networks can learn data distribution from real categorical sequence data, Unaffected by a single normal data. But autoencoder is not. Result of Robustness test showed that he accuracy of the autocoder was 92%, the accuracy of the hostile neural network was 96%, and in terms of sensitivity, the autocoder was 40% and the hostile neural network was 51%. In this paper, experiments have also been conducted to show how much performance changes due to differences in the optimization structure of potential variables. As a result, the level of 1% was improved in terms of sensitivity. These results suggest that it presented a new perspective on optimizing latent variable that were relatively insignificant.