• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.034 seconds

Consensus-Based Distributed Algorithm for Optimal Resource Allocation of Power Network under Supply-Demand Imbalance (수급 불균형을 고려한 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘)

  • Young-Hun, Lim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.440-448
    • /
    • 2022
  • Recently, due to the introduction of distributed energy resources, the optimal resource allocation problem of the power network is more and more important, and the distributed resource allocation method is required to process huge amount of data in large-scale power networks. In the optimal resource allocation problem, many studies have been conducted on the case when the supply-demand balance is satisfied due to the limitation of the generation capacity of each generator, but the studies considering the supply-demand imbalance, that total demand exceeds the maximum generation capacity, have rarely been considered. In this paper, we propose the consensus-based distributed algorithm for the optimal resource allocation of power network considering the supply-demand imbalance condition as well as the supply-demand balance condition. The proposed distributed algorithm is designed to allocate the optimal resources when the supply-demand balance condition is satisfied, and to measure the amount of required resources when the supply-demand is imbalanced. Finally, we conduct the simulations to verify the performance of the proposed algorithm.

Development of catalyst-substrate integrated copper cobalt oxide electrode using electrodeposition for anion exchange membrane water electrolysis (전착법을 이용한 촉매-기판 일체형 구리 코발트 산화물 전극 개발 및 음이온 교환막 수전해 적용)

  • Kim, Dohyung;Kim, Geul Han;Choi, Sung Mook;Lee, Ji-hoon;Jung, Jaehoon;Lee, Kyung-Bok;Yang, Juchan
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.3
    • /
    • pp.180-186
    • /
    • 2022
  • The production of hydrogen via water electrolysis (i.e., green hydrogen) using renewable energy is key to the development of a sustainable society. However, most current electrocatalysts are based on expensive precious metals and require the use of highly purified water in the electrolyte. We demonstrated the preparation of a non-precious metal catalyst based on CuCo2O4 (CCO) via simple electrodeposition. Further, an optimization process for electrodeposition potential, solution concentration and electrodeposition method was develop for a catalyst-substrate integrated electrode, which indicated the highly electrocatalytic performance of the material in electrochemical tests and when applied to an anion exchange membrane water electrolyzer.

Meso-scale based parameter identification for 3D concrete plasticity model

  • Suljevic, Samir;Ibrahimbegovic, Adnan;Karavelic, Emir;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.55-78
    • /
    • 2022
  • The main aim of this paper is the identification of the model parameters for the constitutive model of concrete and concrete-like materials capable of representing full set of 3D failure mechanisms under various stress states. Identification procedure is performed taking into account multi-scale character of concrete as a structural material. In that sense, macro-scale model is used as a model on which the identification procedure is based, while multi-scale model which assume strong coupling between coarse and fine scale is used for numerical simulation of experimental results. Since concrete possess a few clearly distinguished phases in process of deformation until failure, macro-scale model contains practically all important ingredients to include both bulk dissipation and surface dissipation. On the other side, multi-scale model consisted of an assembly micro-scale elements perfectly fitted into macro-scale elements domain describes localized failure through the implementation of embedded strong discontinuity. This corresponds to surface dissipation in macro-scale model which is described by practically the same approach. Identification procedure is divided into three completely separate stages to utilize the fact that all material parameters of macro-scale model have clear physical interpretation. In this way, computational cost is significantly reduced as solving three simpler identification steps in a batch form is much more efficient than the dealing with the full-scale problem. Since complexity of identification procedure primarily depends on the choice of either experimental or numerical setup, several numerical examples capable of representing both homogeneous and heterogeneous stress state are performed to illustrate performance of the proposed methodology.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

AutoFe-Sel: A Meta-learning based methodology for Recommending Feature Subset Selection Algorithms

  • Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1773-1793
    • /
    • 2023
  • Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.

Optimization of Non-Local Means Algorithm in Low-Dose Computed Tomographic Image Based on Noise Level and Similarity Evaluations (노이즈 레벨 및 유사도 평가 기반 저선량 조건의 전산화 단층 검사 영상에서의 비지역적 평균 알고리즘의 최적화)

  • Ha-Seon Jeong;Ie-Jun Kim;Su-Bin Park;Suyeon Park;Yunji Oh;Woo-Seok Lee;Kang-Hyeon Seo;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • In this study, we optimized the FNLM algorithm through a simulation study and applied it to a phantom scanned by low-dose CT to evaluate whether the FNLM algorithm can be used to obtain improved image quality images. We optimized the FNLM algorithm with MASH phantom and FASH phantom, which the algorithm was applied with MATLAB, increasing the smoothing factor from 0.01 to 0.05 with increments of 0.001 and measuring COV, RMSE, and PSNR values of the phantoms. For both phantom, COV and RMSE decreased, and PSNR increased as the smoothing factor increased. Based on the above results, we optimized a smoothing factor value of 0.043 for the FNLM algorithm. Then we applied the optimized FNLM algorithm to low dose lung CT and lung CT under normal conditions. In both images, the COV decreased by 55.33 times and 5.08 times respectively, and we confirmed that the quality of the image of low dose CT applying the optimized FNLM algorithm was 5.08 times better than the image of lung CT under normal conditions. In conclusion, we found that the smoothing factor of 0.043 among the factors of the FNLM algorithm showed the best results and validated the performance by reducing the noise in the low-quality CT images due to low dose with the optimized FNLM algorithm.

Adaptive Enhancement of Low-light Video Images Algorithm Based on Visual Perception (시각 감지 기반의 저조도 영상 이미지 적응 보상 증진 알고리즘)

  • Li Yuan;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.51-60
    • /
    • 2024
  • Aiming at the problem of low contrast and difficult to recognize video images in low-light environment, we propose an adaptive contrast compensation enhancement algorithm based on human visual perception. First of all, the video image characteristic factors in low-light environment are extracted: AL (average luminance), ABWF (average bandwidth factor), and the mathematical model of human visual CRC(contrast resolution compensation) is established according to the difference of the original image's grayscale/chromaticity level, and the proportion of the three primary colors of the true color is compensated by the integral, respectively. Then, when the degree of compensation is lower than the bright vision precisely distinguishable difference, the compensation threshold is set to linearly compensate the bright vision to the full bandwidth. Finally, the automatic optimization model of the compensation ratio coefficient is established by combining the subjective image quality evaluation and the image characteristic factor. The experimental test results show that the video image adaptive enhancement algorithm has good enhancement effect, good real-time performance, can effectively mine the dark vision information, and can be widely used in different scenes.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification (설비 결함 식별 최적화를 위한 오토인코더 기반 N 분할 주파수 영역 이상 탐지)

  • Kichang Park;Yongkwan Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.130-139
    • /
    • 2024
  • Artificial intelligence models are being used to detect facility anomalies using physics data such as vibration, current, and temperature for predictive maintenance in the manufacturing industry. Since the types of facility anomalies, such as facility defects and failures, anomaly detection methods using autoencoder-based unsupervised learning models have been mainly applied. Normal or abnormal facility conditions can be effectively classified using the reconstruction error of the autoencoder, but there is a limit to identifying facility anomalies specifically. When facility anomalies such as unbalance, misalignment, and looseness occur, the facility vibration frequency shows a pattern different from the normal state in a specific frequency range. This paper presents an N-segmentation anomaly detection method that performs anomaly detection by dividing the entire vibration frequency range into N regions. Experiments on nine kinds of anomaly data with different frequencies and amplitudes using vibration data from a compressor showed better performance when N-segmentation was applied. The proposed method helps materialize them after detecting facility anomalies.