• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.029 seconds

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless Sensor Networks

  • Deng, Changliang;Wei, Yimin;Shen, Yuehong;Zhao, Wei;Li, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4814-4834
    • /
    • 2018
  • This paper presents an architecture for wireless sensor networks (WSNs) with blind source separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS method is obviously advantageous for WSNs. The optimization problem of the BSS of multiple independent source signals with complex and noncircular distributions from observed sensor nodes is considered and addressed. This paper applies Castella's reference-based scheme to Novey's negentropy-based algorithms, and then proposes a novel fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The proposed method for the sink nodes is substantially more efficient than Novey's quasi-Newton algorithm in terms of computational speed under large numbers of samples, can effectively improve the power consumption effeciency of the sink nodes, and is significantly beneficial for WSNs and wireless communication networks (WCNs). The effectiveness and performance of the proposed method are validated and compared with three related BSS algorithms through theoretical analysis and simulations.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

Optimization of Multi-Atlas Segmentation with Joint Label Fusion Algorithm for Automatic Segmentation in Prostate MR Imaging

  • Choi, Yoon Ho;Kim, Jae-Hun;Kim, Chan Kyo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation algorithm, which compensates for dependent errors that may exist between atlases. However, in order to get good segmentation results, it is very important to set the several free parameters of the algorithm to optimal values. In this study, we first investigate the feasibility of a JLF algorithm for prostate segmentation in MR images, and then suggest the optimal set of parameters for the automatic prostate segmentation by validating the results of each parameter combination. Materials and Methods: We acquired T2-weighted prostate MR images from 20 normal heathy volunteers and did a series of cross validations for every set of parameters of JLF. In each case, the atlases were rigidly registered for the target image. Then, we calculated their voting weights for label fusion from each combination of JLF's parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation performances by five validation metrics of the Prostate MR Image Segmentation challenge. Results: As the number of voxels participating in the voting weight calculation and the number of referenced atlases is increased, the overall segmentation performance is gradually improved. The JLF algorithm showed the best results for dice similarity coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, rpz = 1, rsxy = 3, rsz = 1, and β = 3. Conclusion: The evaluated results showed the feasibility of the JLF algorithm for automatic segmentation of prostate MRI. This empirical analysis of segmentation results by label fusion allows for the appropriate setting of parameters.

A Hot-Data Replication Scheme Based on Data Access Patterns for Enhancing Processing Speed of MapReduce (맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법)

  • Son, Ingook;Ryu, Eunkyung;Park, Junho;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.21-27
    • /
    • 2013
  • In recently years, with the growth of social media and the development of mobile devices, the data have been significantly increased. Hadoop has been widely utilized as a typical distributed storage and processing framework. The tasks in Mapreduce based on the Hadoop distributed file system are allocated to the map as close as possible by considering the data locality. However, there are data being requested frequently according to the data analysis tasks of Mapreduce. In this paper, we propose a hot-data replication mechanism to improve the processing speed of Mapreduce according to data access patterns. The proposed scheme reduces the task processing time and improves the data locality using the replica optimization algorithm on the high access frequency of hot data. It is shown through performance evaluation that the proposed scheme outperforms the existing scheme in terms of the load of access frequency.

Analysis of the Levy Mutation Operations in the Evolutionary prograamming using Mean Square Displacement and distinctness (평균변화율 및 유일성을 통한 진화 프로그래밍에서 레비 돌연변이 연산 분석)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.11
    • /
    • pp.833-841
    • /
    • 2001
  • Abstract In this work, we analyze the Levy mutation operations based on the Levy probability distribution in the evolutionary programming via the mean square displacement and the distinctness. The Levy probability distribution is characterized by an infinite second moment and has been widely studied in conjunction with the fractals. The Levy mutation operators not only generate small varied offspring, but are more likely to generate large varied offspring than the conventional mutation operators. Based on this fact, we prove mathematically, via the mean square displacement and the distinctness, that the Levy mutation operations can explore and exploit a search space more effectively. As a result, one can get better performance with the Levy mutation than the conventional Gaussian mutation for the multi-valued functional optimization problems.

  • PDF

A Markov Approximation-Based Approach for Network Service Chain Embedding (Markov Approximation 프레임워크 기반 네트워크 서비스 체인 임베딩 기법 연구)

  • Chuan, Pham;Nguyen, Minh N.H.;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.719-725
    • /
    • 2017
  • To reduce management costs and improve performance, the European Telecommunication Standards Institute (ETSI) introduced the concept of network function virtualization (NFV), which can implement network functions (NFs) on cloud/datacenters. Within the NFV architecture, NFs can share physical resources by hosting NFs on physical nodes (commodity servers). For network service providers who support NFV architectures, an efficient resource allocation method finds utility in being able to reduce operating expenses (OPEX) and capital expenses (CAPEX). Thus, in this paper, we analyzed the network service chain embedding problem via an optimization formulation and found a close-optimal solution based on the Markov approximation framework. Our simulation results show that our approach could increases on average CPU utilization by up to 73% and link utilization up to 53%.

A Study on the Convergence of the Evolution Strategies based on Learning (학습에의한 진화전략의 수렴성에 관한연구)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.650-656
    • /
    • 1999
  • In this paper, we study on the convergence of the evolution strategies by introducing the Lamarckian evolution and the Baldwin effect, and propose a random local searching and a reinforcement local searching methods. In the random local searching method some neighbors generated randomly from each individual are med without any other information, but in the reinforcement local searching method the previous results of the local search are reflected on the current local search. From the viewpoint of the purpose of the local search it is suitable that we try all the neighbors of the best individual and then search the neighbors of the best one of them repeatedly. Since the reinforcement local searching method based on the Lamarckian evolution and Baldwin effect does not search neighbors randomly, but searches the neighbors in the direction of the better fitness, it has advantages of fast convergence and an improvement on the global searching capability. In other words the performance of the evolution strategies is improved by introducing the learning, reinforcement local search, into the evolution. We study on the learning effect on evolution strategies by applying the proposed method to various function optimization problems.

  • PDF

Content Distribution for 5G Systems Based on Distributed Cloud Service Network Architecture

  • Jiang, Lirong;Feng, Gang;Qin, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4268-4290
    • /
    • 2015
  • Future mobile communications face enormous challenges as traditional voice services are replaced with increasing mobile multimedia and data services. To address the vast data traffic volume and the requirement of user Quality of Experience (QoE) in the next generation mobile networks, it is imperative to develop efficient content distribution technique, aiming at significantly reducing redundant data transmissions and improving content delivery performance. On the other hand, in recent years cloud computing as a promising new content-centric paradigm is exploited to fulfil the multimedia requirements by provisioning data and computing resources on demand. In this paper, we propose a cooperative caching framework which implements State based Content Distribution (SCD) algorithm for future mobile networks. In our proposed framework, cloud service providers deploy a plurality of cloudlets in the network forming a Distributed Cloud Service Network (DCSN), and pre-allocate content services in local cloudlets to avoid redundant content transmissions. We use content popularity and content state which is determined by content requests, editorial updates and new arrivals to formulate a content distribution optimization model. Data contents are deployed in local cloudlets according to the optimal solution to achieve the lowest average content delivery latency. We use simulation experiments to validate the effectiveness of our proposed framework. Numerical results show that the proposed framework can significantly improve content cache hit rate, reduce content delivery latency and outbound traffic volume in comparison with known existing caching strategies.

An Efficient Multicast-based Binding Update Scheme for Network Mobility

  • Kim, Moon-Seong;Radha, Hayder;Lee, Jin-Young;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.23-35
    • /
    • 2008
  • Mobile IP (MIP) is the solution supporting the mobility of Mobile Nodes (MNs), however, it is known to lack the support for NEtwork MObility (NEMO). NEMO manages situations when an entire network, composed of one or more subnets, dynamically changes its point of attachment to the Internet. NEMO Basic Support (NBS) protocol ensures session continuity for all the nodes in a mobile network, however, there exists a serious pinball routing problem. To overcome this weakness, there are many Route Optimization (RO) solutions such as Bi-directional Tunneling (BT) mechanism, Aggregation and Surrogate (A&S) mechanism, Recursive Approach, etc. The A&S RO mechanism is known to outperform the other RO mechanisms, except for the Binding Update (BU) cost. Although Improved Prefix Delegation (IPD) reduces the cost problem of Prefix Delegation (PD), a well-known A&S protocol, the BU cost problem still presents, especially when a large number of Mobile Routers (MRs) and MNs exist in the environment such as train, bus, ship, or aircraft. In this paper, a solution to reduce the cost of delivering the BU messages is proposed using a multicast mechanism instead of unicasting such as the traditional BU of the RO. The performance of the proposed multicast-based BU scheme is examined with an analytical model which shows that the BU cost enhancement is up to 32.9% over IPDbased, hence, it is feasible to predict that the proposed scheme could benefit in other NEMO RO protocols.