• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.028 seconds

Time-Predictable Java Dynamic Compilation on Multicore Processors

  • Sun, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-38
    • /
    • 2012
  • Java has been increasingly used in programming for real-time systems. However, some of Java's features such as automatic memory management and dynamic compilation are harmful to time predictability. If these problems are not solved properly then it can fundamentally limit the usage of Java for real-time systems, especially for hard real-time systems that require very high time predictability. In this paper, we propose to exploit multicore computing in order to reduce the timing unpredictability that is caused by dynamic compilation and adaptive optimization. Our goal is to retain high performance comparable to that of traditional dynamic compilation, while at the same time, obtain better time predictability for Java virtual machine (JVM). We have studied pre-compilation techniques to utilize another core more efficiently, preoptimization on another core (PoAC) scheme to replace the adaptive optimization system (AOS) in Jikes JVM and the counter based optimization (CBO). Our evaluation reveals that the proposed approaches are able to attain high performance while greatly reducing the variation of the execution time for Java applications.

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.

Machine learning-enabled parameterization scheme for aerodynamic shape optimization of wind-sensitive structures: A-proof-of-concept study

  • Shaopeng Li;Brian M. Phillips;Zhaoshuo Jiang
    • Wind and Structures
    • /
    • v.39 no.3
    • /
    • pp.175-190
    • /
    • 2024
  • Aerodynamic shape optimization is very useful for enhancing the performance of wind-sensitive structures. However, shape parameterization, as the first step in the pipeline of aerodynamic shape optimization, still heavily depends on empirical judgment. If not done properly, the resulting small design space may fail to cover many promising shapes, and hence hinder realizing the full potential of aerodynamic shape optimization. To this end, developing a novel shape parameterization scheme that can reflect real-world complexities while being simple enough for the subsequent optimization process is important. This study proposes a machine learning-based scheme that can automatically learn a low-dimensional latent representation of complex aerodynamic shapes for bluff-body wind-sensitive structures. The resulting latent representation (as design variables for aerodynamic shape optimization) is composed of both discrete and continuous variables, which are embedded in a hierarchy structure. In addition to being intuitive and interpretable, the mixed discrete and continuous variables with the hierarchy structure allow stakeholders to narrow the search space selectively based on their interests. As a proof-of-concept study, shape parameterization examples of tall building cross sections are used to demonstrate the promising features of the proposed scheme and guide future investigations on data-driven parameterization for aerodynamic shape optimization of wind-sensitive structures.

Magnetic Field Gradient Optimization for Electronic Anti-Fouling Effect in Heat Exchanger

  • Han, Yong;Wang, Shu-Tao
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1921-1927
    • /
    • 2014
  • A new method for optimizing the magnetic field gradient in the exciting coil of electronic anti-fouling (EAF) system is presented based on changing exciting coil size. In the proposed method, two optimization expressions are deduced based on biot-savart law. The optimization expressions, which can describe the distribution of the magnetic field gradient in the coil, are the function of coil radius and coil length. These optimization expressions can be used to obtain an accurate coil size if the magnetic field gradient on a certain point on the coil's axis of symmetry is needed to be the maximum value. Comparing with the experimental results and the computation results using Finite Element Method simulation to the magnetic field gradient on the coil's axis of symmetry, the computation results obtained by the optimization expression in this article can fit the experimental results and the Finite Element Method results very well. This new method can optimize the EAF system's anti-fouling performance based on improving the magnetic field gradient distribution in the exciting coil.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

RELIABILITY-BASED OPTIMIZATION OF AIRFOILS USING A MOMENT METHOD AND PARSEC FUNCTION (모멘트 기법과 PARSEC 함수를 이용한 에어포일 신뢰성 기반 최적설계)

  • Lee, J.;Kang, H.;Kwon, J.;Kwak, B.;Jung, K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, the reliability-based design optimization of the airfoil was performed. PARSEC function was used to consider the uncertainty of the aerodynamic shape for the reliability-based shape optimization of airfoils. Among various reliability analysis methods, the moment method was used to compute the probability of failure of the aerodynamic performance. The accuracy of the reliability analysis was compared with other methods and it was found that the moment method predicts the probability of failure accurately. Deterministic and reliability-based optimizations were performed for the shape of the airfoil and it was demonstrated that reliability-based optimum assures the aerodynamic performances under uncertainties of the shape of the airfoil.

A cavitation performance prediction method for pumps PART1-Proposal and feasibility

  • Yun, Long;Rongsheng, Zhu;Dezhong, Wang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2471-2478
    • /
    • 2020
  • Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitation in pumps, so it is necessary to improve pumps cavitation performance. The modern pump optimization design method mainly adopts parameterization and artificial intelligence coupling optimization, which requires direct correlation between geometric parameters and pump performance. The existing cavitation performance calculation method is difficult to be integrated into multi-objective automatic coupling optimization. Therefore, a fast prediction method for pump cavitation performance is urgently needed. This paper proposes a novel cavitation prediction method based on impeller pressure isosurface at single-phase media. When the cavitation occurs, the area of pressure isosurface Siso increases linearly with the NPSHa decrease. This demonstrates that with the development of cavitation, the variation law of the head with the NPSHa and the variation law of the head with the area of pressure isosurface are consistent. Therefore, the area of pressure isosurface Siso can be used to predict cavitation performance. For a certain impeller blade, since the area ratio Rs is proportional to the area of pressure isosurface Siso, the cavitation performance can be predicted by the Rs. In this paper, a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments, which will greatly accelerate the pump hydraulic optimization design.

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 1: Design Method (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제1편: 설계 방법)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.148-157
    • /
    • 2012
  • Reliability-based design optimization (RBDO) problem is usually formulated as an optimization problem to minimize an objective function subjected to probabilistic constraint functions which may include deterministic design variables as well as random variables. The challenging task is that, because the probability models of the random variables are often assumed based on limited data, there exists a possibility of selecting inappropriate distribution models and/or model parameters for the random variables, which can often lead to disastrous consequences. In order to select the most appropriate distribution model from the limited observation data as well as model parameters, this study takes into account a set of possible candidate models for the random variables. The suitability of each model is then investigated by employing performance and risk functions. In this regard, this study enables structural design optimization and fitness assessment of the distribution models of the random variables at the same time. As the first paper of a two-part series, this paper describes a new design method considering probability model uncertainties. The robust performance of the proposed method is presented in Part 2. To demonstrate the effectiveness of the proposed method, an example of ten-bar truss structure is considered. The numerical results show that the proposed method can provide the optimal design variables while guaranteeing the most desirable distribution models for the random variables even in case the limited data are only available.

Position and Speed Sensorless Vector Control of SynRM for Efficiency Optimization Control (효율 최적화 제어를 위한 SynRM의 위치 및 속도 센서리스 벡터제어)

  • Lee , Jung-Chul;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.59-70
    • /
    • 2002
  • This paper proposes a position and speed sensorless vector control for Synchronous Reluctance Motor(SynRM) operating at optimum efficiency and high response, in which core loss is taken into account, and discusses the performance of system. The proposed control scheme is based on the flux estimation combined stator voltage and current. In this paper, current angle condition of efficiency optimization which minimizes the copper and iron losses is derived based on the equivalent circuit model of the SynRM. The research result of closed loop position and speed control with efficiency optimization control is given to verify the proposed scheme.