• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.027 seconds

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

Genetic algorithms for balancing multiple variables in design practice

  • Kim, Bomin;Lee, Youngjin
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.241-256
    • /
    • 2017
  • This paper introduces the process for Multi-objective Optimization Framework (MOF) which mediates multiple conflicting design targets. Even though the extensive researches have shown the benefits of optimization in engineering and design disciplines, most optimizations have been limited to the performance-related targets or the single-objective optimization which seek optimum solution within one design parameter. In design practice, however, designers should consider the multiple parameters whose resultant purposes are conflicting. The MOF is a BIM-integrated and simulation-based parametric workflow capable of optimizing the configuration of building components by using performance and non-performance driven measure to satisfy requirements including build programs, climate-based daylighting, occupant's experience, construction cost and etc. The MOF will generate, evaluate all different possible configurations within the predefined each parameter, present the most optimized set of solution, and then feed BIM environment to minimize data loss across software platform. This paper illustrates how Multi-objective optimization methodology can be utilized in design practice by integrating advanced simulation, optimization algorithm and BIM.

Graph based KNN for Optimizing Index of News Articles

  • Jo, Taeho
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • This research proposes the index optimization as a classification task and application of the graph based KNN. We need the index optimization as an important task for maximizing the information retrieval performance. And we try to solve the problems in encoding words into numerical vectors, such as huge dimensionality and sparse distribution, by encoding them into graphs as the alternative representations to numerical vectors. In this research, the index optimization is viewed as a classification task, the similarity measure between graphs is defined, and the KNN is modified into the graph based version based on the similarity measure, and it is applied to the index optimization task. As the benefits from this research, by modifying the KNN so, we expect the improvement of classification performance, more graphical representations of words which is inherent in graphs, the ability to trace more easily results from classifying words. In this research, we will validate empirically the proposed version in optimizing index on the two text collections: NewsPage.com and 20NewsGroups.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Design of pin jointed structures using teaching-learning based optimization

  • Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.209-225
    • /
    • 2013
  • A procedure employing a Teaching-Learning Based Optimization (TLBO) method is developed to design discrete pin jointed structures. TLBO process consists of two parts: the first part represents learning from teacher and the second part illustrates learning by interaction among the learners. The results are compared with those obtained using other various evolutionary optimization methods considering the best solution, average solution, and computational effort. Consequently, the TLBO algorithm works effectively and demonstrates remarkable performance for the optimization of engineering design applications.

Seismic performance analysis of steel-brace RC frame using topology optimization

  • Qiao, Shengfang;Liang, Huqing;Tang, Mengxiong;Wang, Wanying;Hu, Hesong
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.417-432
    • /
    • 2019
  • Seismic performance analysis of steel-brace reinforced concrete (RC) frame using topology optimization in highly seismic region was discussed in this research. Topology optimization based on truss-like material model was used, which was to minimum volume in full-stress method. Optimized bracing systems of low-rise, mid-rise and high-rise RC frames were established, and optimized bracing systems of substructure were also gained under different constraint conditions. Thereafter, different structure models based on optimized bracing systems were proposed and applied. Last, structural strength, structural stiffness, structural ductility, collapse resistant capacity, collapse probability and demolition probability were studied. Moreover, the brace buckling was discussed. The results show that bracing system of RC frame could be derived using topology optimization, and bracing system based on truss-like model could help to resolve numerical instabilities. Bracing system of topology optimization was more effective to enhance structural stiffness and strength, especially in mid-rise and high-rise frames. Moreover, bracing system of topology optimization contributes to increase collapse resistant capacity, as well as reduces collapse probability and accumulated demolition probability. However, brace buckling might weaken beneficial effects.

On Diagonal Loading for Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

  • Lin, Jing-Ran;Peng, Qi-Cong;Shao, Huai-Zong
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2007
  • Robust adaptive beamforming based on worst-case performance optimization is investigated in this paper. It improves robustness against steering vector mismatches by the approach of diagonal loading. A closed-form solution to optimal loading is derived after some approximations. Besides reducing the computational complexity, it shows how different factors affect the optimal loading. Based on this solution, a performance analysis of the beamformer is carried out. As a consequence, approximated closed-form expressions of the source-of-interest power estimation and the output signalto-interference-plus-noise ratio are presented in order to predict its performance. Numerical examples show that the proposed closed-form expressions are very close to their actual values.

  • PDF

Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System (하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계)

  • Jang, Seong-Dae;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.