• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.025 seconds

Development of an Efficient Optimization Technique for Robust Design by Approximating Probability Constratints (확률조건의 근사화를 통한 효율적인 강건 최적설계 기법의 개발)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3053-3060
    • /
    • 2000
  • Alternative formulation is presented for robust optimization problems and an efficient computational scheme for reliability estimation is proposed. Both design variables and design parameters considered as random variables about their nominal values. To ensure the robustness of objective performance a new cost function bounding the performance and a new constraint limiting the performance variation are introduced. The constraint variations are regulated by considering the probability of feasibility. Each probability constraint is transformed into a sub-optimization problem and then is resolved with the modified advanced first order second moment(AFOSM) method for computational efficiency. The proposed robust optimization method has advantages that the mean value and the variation of the performance function are controlled simultaneously and the second order sensitivity information is not required even in case of gradient based optimization. The suggested method is examined by solving three examples and the results are compared with those for deterministic case and those available in literature.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Development of Hull Form Optimization Method for Improving Resistance Performance of Small Catamaran (소형 쌍동선의 저항성능 개선을 위한 선형 최적화 기법 개발)

  • Jung Yoon Park; Jonghyeon Lee;Janghoon Seo;Dong-Woo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.332-340
    • /
    • 2023
  • The present study established hull form optimization for small catamaran based on variations of knuckle lines. Four knuckle lines below the free surface were employed as design variables. Knuckle lines were independently transformed within remaining the main dimensions of the existing hull. For the hull form optimization, the SHERPA algorithm of HEEDS was utilized. Computational fluid dynamics was employed to estimate the resistance performance. The optimal hull showed the improvement of resistance performance of 9.3% than that of existing hull. The improvement of wave and pressure distributions for optimal hull was confirmed. Throughout the present study, it is expected that established optimization method can be applied for various small vessels such as fishing and leisure boats.

Controller Optimization Algorithm for a 12-pulse Voltage Source Converter based HVDC System

  • Agarwal, Ruchi;Singh, Sanjeev
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.643-653
    • /
    • 2017
  • The paper presents controller optimization algorithm for a 12-pulse voltage source converter (VSC) based high voltage direct current (HVDC) system. To get an optimum algorithm, three methods namely conventional-Zeigler-Nichols, linear-golden section search (GSS) and stochastic-particle swarm optimization (PSO) are applied to control of 12 pulse VSC based HVDC system and simulation results are presented to show the best among the three. The performance results are obtained under various dynamic conditions such as load perturbation, non-linear load condition, and voltage sag, tapped load fault at points-of-common coupling (PCC) and single-line-to ground (SLG) fault at input AC mains. The conventional GSS and PSO algorithm are modified to enhance their performances under dynamic conditions. The results of this study show that modified particle swarm optimization provides the best results in terms of quick response to the dynamic conditions as compared to other optimization methods.

Optimal Design of Magnetic Levitation Controller Using Advanced Teaching-Learning Based Optimization (개선된 수업-학습기반 최적화 알고리즘을 이용한 자기부상 제어기의 최적 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.90-98
    • /
    • 2015
  • In this paper, an advanced teaching-learning based optimization(TLBO) method for the magnetic levitation controller of Maglev transportation system is proposed to optimize the control performances. An attraction-type levitation system is intrinsically unstable and requires a delicate control. It is difficult to completely satisfy the desired performance through the methods using conventional methods and intelligent optimizations. In the paper, we use TLBO and clonal selection algorithm to choose the optimal control parameters for the magnetic levitation controller. To verify the proposed algorithm, we compare control performances of the proposed method with the genetic algorithm and the particle swarm optimization. The simulation results show that the proposed method is more effective than conventional methods.

Reliability-Based Optimal Design of Pillar Sections Considering Fundamental Vibration Modes of Vehicle Body Structure (차체 기본 진동 모드를 고려한 필러 단면의 신뢰성 최적설계)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.107-113
    • /
    • 2004
  • This paper presents the pillar section optimization technique considering the reliability of the vehicle body structure consisted of complicated thin-walled panels. The response surface method is utilized to obtain the response surface models that describe the approximate performance functions representing the system characteristics on the section properties of the pillar and on the mass and the natural frequencies of the vehicle B.I.W. The reliability-based design optimization on the pillar sections Is performed and compared with the conventional deterministic optimization. The FORM is applied for the reliability analysis of the vehicle body structure. The developed optimization system is applied to the pillar section design considering the fundamental natural frequencies of passenger car body structure. By applying the proposed RBDO technique, it can be possible to optimize the pillar sections considering the reliability that engineers require.

A Robust Optimization Using the Statistics Based on Kriging Metamodel

  • Lee Kwon-Hee;Kang Dong-Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1169-1182
    • /
    • 2006
  • Robust design technology has been applied to versatile engineering problems to ensure consistency in product performance. Since 1980s, the concept of robust design has been introduced to numerical optimization field, which is called the robust optimization. The robustness in the robust optimization is determined by a measure of insensitiveness with respect to the variation of a response. However, there are significant difficulties associated with the calculation of variations represented as its mean and variance. To overcome the current limitation, this research presents an implementation of the approximate statistical moment method based on kriging metamodel. Two sampling methods are simultaneously utilized to obtain the sequential surrogate model of a response. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method. Then, the simulated annealing algorithm of global optimization methods is adopted to find the global robust optimum. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

Swarm Intelligence-based Optimal Design for Selecting the Kinematic Parameters of a Manipulator According to the Desired Task Space Trajectory (요청한 작업 경로에 따른 매니퓰레이터의 기구학적 변수 선정을 위한 군집 지능 기반 최적 설계)

  • Lee, Joonwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.504-510
    • /
    • 2016
  • Robots are widely utilized in many fields, and various demands need customized robots. This study proposes an optimal design method based on swarm intelligence for selecting the kinematic parameter of a manipulator according to the task space trajectory desired by the user. The optimal design method is dealt with herein as an optimization problem. This study is based on swarm intelligence-based optimization algorithms (i.e., ant colony optimization (ACO) and particle swarm optimization algorithms) to determine the optimal kinematic parameters of the manipulator. The former is used to select the optimal kinematic parameter values, whereas the latter is utilized to solve the inverse kinematic problem when the ACO determines the parameter values. This study solves a design problem with the PUMA 560 when the desired task space trajectory is given and discusses its results in the simulation part to verify the performance of the proposed design.

Reliability-Based Shape Optimization Under the Stress Constraints (응력 제한조건하의 신뢰성 기반 형상 최적설계)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2010
  • The objective of this study is to integrate reliability analysis into shape optimization problem using the evolutionary structural optimization (ESO) in the application example. Reliability-based shape optimization is formulated as volume minimization problem with probabilistic stress constraint under minimization max. von Mises stress and allow stress. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., reliability index approach (RIA), performance measure approach (PMA), single-loop singlevector (SLSV) and adaptive-loop (ADL), are used. Reliability-based shape optimization design process is conducted to obtain optimal shape satisfying max. von Mises stress and reliability index constraints with the above four methods, and then each result is compared with respect to numerical stability and computing time.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.