• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.03 seconds

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

Development of Fitness and Interactive Decision Making in Multi-Objective Optimization (다목적 유전자 알고리즘에 있어서 적합도 평가방법과 대화형 의사결정법의 제안 )

  • Yeboon Yun;Dong Joon Park;Min Yoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.109-117
    • /
    • 2022
  • Most of real-world decision-making processes are used to optimize problems with many objectives of conflicting. Since the betterment of some objectives requires the sacrifice of other objectives, different objectives may not be optimized simultaneously. Consequently, Pareto solution can be considered as candidates of a solution with respect to a multi-objective optimization (MOP). Such problem involves two main procedures: finding Pareto solutions and choosing one solution among them. So-called multi-objective genetic algorithms have been proved to be effective for finding many Pareto solutions. In this study, we suggest a fitness evaluation method based on the achievement level up to the target value to improve the solution search performance by the multi-objective genetic algorithm. Using numerical examples and benchmark problems, we compare the proposed method, which considers the achievement level, with conventional Pareto ranking methods. Based on the comparison, it is verified that the proposed method can generate a highly convergent and diverse solution set. Most of the existing multi-objective genetic algorithms mainly focus on finding solutions, however the ultimate aim of MOP is not to find the entire set of Pareto solutions, but to choose one solution among many obtained solutions. We further propose an interactive decision-making process based on a visualized trade-off analysis that incorporates the satisfaction of the decision maker. The findings of the study will serve as a reference to build a multi-objective decision-making support system.

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

Efficiency Optimization Control of SynRM Drive with HAI Controller (HAI 제어기에 의한 SynRM 드라이브의 효율 최적화 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.98-106
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the cower and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and f-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

MRA AND POD APPLICATION FOR AERODYNAMIC DESIGN OPTIMIZATION (MRA와 POD를 적용한 공력특성 최적설계)

  • Koo, B.C.;Han, J.H.;Jo, T.H.;Park, K.H.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.7-15
    • /
    • 2015
  • This paper attempts to evaluate the accuracy and efficiency of a design optimization procedure by combining wavelets-based multi resolution analysis method and proper orthogonal decomposition (POD) technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Thus, even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system by conducting singular value decomposition for various field simulations. In this research, POD combined Design Optimization model is proposed and its efficiency and accuracy are to be evaluated. For additional efficiency improvement of the procedure, multi resolution analysis method is also being employed during snapshot constructions (POD training period). The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/MRA design procedure could significantly reduce the total design turnaround time and also capture all detailed complex flow features as in full order analysis.

Optimization of the computing environment to improve the speed of the modeling (WRF and CMAQ) calculation of the National Air Quality Forecast System (국가 대기질 예보 시스템의 모델링(기상 및 대기질) 계산속도 향상을 위한 전산환경 최적화 방안)

  • Myoung, Jisu;Kim, Taehee;Lee, Yonghee;Suh, Insuk;Jang, Limsuk
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.723-735
    • /
    • 2018
  • In this study, to investigate an optimal configuration method for the modeling system, we performed an optimization experiment by controlling the types of compilers and libraries, and the number of CPU cores because it was important to provide reliable model data very quickly for the national air quality forecast. We were made up the optimization experiment of twelve according to compilers (PGI and Intel), MPIs (mvapich-2.0, mvapich-2.2, and mpich-3.2) and NetCDF (NetCDF-3.6.3 and NetCDF-4.1.3) and performed wall clock time measurement for the WRF and CMAQ models based on the built computing resources. In the result of the experiment according to the compiler and library type, the performance of the WRF (30 min 30 s) and CMAQ (47 min 22 s) was best when the combination of Intel complier, mavapich-2.0, and NetCDF-3.6.3 was applied. Additionally, in a result of optimization by the number of CPU cores, the WRF model was best performed with 140 cores (five calculation servers), and the CMAQ model with 120 cores (five calculation servers). While the WRF model demonstrated obvious differences depending on the number of CPU cores rather than the types of compilers and libraries, CMAQ model demonstrated the biggest differences on the combination of compilers and libraries.

Actuator Mixer Design in Rotary-Wing Mode Based on Convex Optimization Technique for Electric VTOL UAV (컨벡스 최적화 기법 기반 전기추진 수직이착륙 무인기의 추진 시스템 고장 대처를 위한 회전익 모드 믹서 설계)

  • Jung, Yeondeuk;Choi, Hyungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.691-701
    • /
    • 2020
  • An actuator mixer design using convex optimization technique situation where the propulsion system of an electric VTOL UAV during vertical take-off and landing maneuvers is proposed. The attainable control set to analyze the impact from failure of each motor and propeller can be calculated and illustrated using the properties of the convex function. The control allocation can be defined as a convex function optimization problem to obtain an optimal solution in real time. The mixer is implemented using a convex optimization solver, and the performance of the control allocation methods is compared to the attainable control set. Finally, the proposed mixer is compared with other techniques with nonlinear sux degree-of-freedom simulation.

Efficient Robust Design Optimization Using Statistical Moments Based on Multiplicative Decomposition Method (곱분해 기법 기반의 통계 모멘트를 이용한 효율적인 강건 최적설계)

  • Cho, Su-Gil;Lee, Min-Uk;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1109-1114
    • /
    • 2012
  • The performance of a system can be affected by various variables such as manufacturing tolerances, uncertainties of material properties, and environmental factors acting on the system. Robust design optimization has attracted much attention in the design of products because it can find the best design solution that minimizes the variance of the response while considering the distribution of the variables. However, the computational cost and accuracy of optimization have thus far been a challenging problem. In this study, robust design optimization using the multiplicative decomposition method is proposed in order to solve these problems. Because the proposed method calculates the mean and variance of the system directly from the kriging metamodel using the multiplicative decomposition method, it can be used to search for a robust optimum design accurately and efficiently. Several mathematical and engineering examples are used to demonstrate the feasibility of the proposed method.

Design Optimization of a Paper Feeding Mechanism using Numerical Analysis Program (수치해석 프로그램을 이용한 미디어 이송 장치의 기구학적 최적설계)

  • Lee S.G.;Choi J.H.;Bae D.S.;Cho H.J.;Song I.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.107-108
    • /
    • 2006
  • This paper shows the design optimization of the paper feeding mechanism under dynamic behavior by using commercial codes of RecurDyn/MTT2D and RecurDyn/AutoDesign which are developed by functionBay, Inc. A virtual mockup for dynamics analysis of the paper feeding mechanism is build on RecurDyn/MTT2D and is simulated. Flexible paper is represented as a series of rigid bars connected by revolute joints and rotational spring dampers. Paper is fed by a contact and friction mechanism on rollers or guides. The slip of the paper and nip force of rollers are measured to estimate the system performance. After a simulation, these performances are automatically send to RecurDyn/AutoDesign which is a sequential approximate optimization tool based on the response surface modeling. RecurDyn/AutoDesign makes the approximate objective function and computes the optimized design points of the design variables and gives them to analysis tool. And then the simulation is repeated with the updated design variables. These processes are repeated until finding a tolerable design optimization. In this paper, a paper feeding mechanism is introduced and it is optimized with the proposed algorithms.

  • PDF

Analysis of Effects of Building Energy Consumption Characteristics on the Optimization Ratio for New and Renewable Energy Systems (건물에너지사용특성이 신재생에너지시스템 최적화 비율에 미치는 영향분석)

  • Lee, Yong-Ho;Hong, Jun-Ho;Kim, Yong-Kyoung;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.117-126
    • /
    • 2014
  • This study developed a KRESS program designed to find the optimization ratio for new and renewable energy systems and analyze the effects of building energy consumption characteristics on the ratio. In spite of clear differences in predicted energy consumption and energy consumption by the loads among 18 facilities, the current formula for obligatory supply ratios applies a correction coefficient according to the building purposes based on energy consumption per each unit area in medical facilities and thus reflects no energy consumption characteristics according to the building purposes. The optimization ratio for new and renewable energy systems was the same for all facilities when the correction coefficients by the building purposes and new and renewable energy sources were all applied. When the correction coefficients were not applied, however, the optimization ratio varied according to building energy consumption characteristics. The findings raise a need to test the correction coefficients in order to select new and renewable energy systems that take into account energy consumption characteristics by the building purposes and loads and reflect economy, environmental performance, and technology.