• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.032 seconds

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

Trends of Compiler Development for AI Processor (인공지능 프로세서 컴파일러 개발 동향)

  • Kim, J.K.;Kim, H.J.;Cho, Y.C.P.;Kim, H.M.;Lyuh, C.G.;Han, J.;Kwon, Y.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.32-42
    • /
    • 2021
  • The rapid growth of deep-learning applications has invoked the R&D of artificial intelligence (AI) processors. A dedicated software framework such as a compiler and runtime APIs is required to achieve maximum processor performance. There are various compilers and frameworks for AI training and inference. In this study, we present the features and characteristics of AI compilers, training frameworks, and inference engines. In addition, we focus on the internals of compiler frameworks, which are based on either basic linear algebra subprograms or intermediate representation. For an in-depth insight, we present the compiler infrastructure, internal components, and operation flow of ETRI's "AI-Ware." The software framework's significant role is evidenced from the optimized neural processing unit code produced by the compiler after various optimization passes, such as scheduling, architecture-considering optimization, schedule selection, and power optimization. We conclude the study with thoughts about the future of state-of-the-art AI compilers.

Slope stability analysis using black widow optimization hybridized with artificial neural network

  • Hu, Huanlong;Gor, Mesut;Moayedi, Hossein;Osouli, Abdolreza;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.523-533
    • /
    • 2022
  • A novel metaheuristic search method, namely black widow optimization (BWO) is employed to increase the accuracy of slope stability analysis. The BWO is a recently-developed optimizer that supervises the training of an artificial neural network (ANN) for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The designed slope bears a loaded foundation in different distances from the crest. A sensitivity analysis is conducted based on the number of active individuals in the BWO algorithm, and it was shown that the best performance is acquired for the population size of 40. Evaluation of the results revealed that the capability of the ANN was significantly enhanced by applying the BWO. In this sense, the learning root mean square error fell down by 23.34%. Also, the correlation between the testing data rose from 0.9573 to 0.9737. Therefore, the postposed BWO-ANN can be promisingly used for the early prediction of FOS in real-world projects.

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das;Rajdip Paul;Sujit Kumar Dalui
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.105-120
    • /
    • 2023
  • The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

Metaheuristic-designed systems for simultaneous simulation of thermal loads of building

  • Lin, Chang;Wang, Junsong
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.677-691
    • /
    • 2022
  • Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms

  • Rui Liang;Behzad Bayrami
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.91-107
    • /
    • 2023
  • An effective approach to promoting sustainability within the construction industry is the use of recycled aggregate concrete (RAC) as a substitute for natural aggregates. Ensuring the frost resilience of RAC technologies is crucial to facilitate their adoption in regions characterized by cold temperatures. The main aim of this study was to use the Random Forests (RF) approach to forecast the frost durability of RAC in cold locations, with a focus on the durability factor (DF) value. Herein, three optimization algorithms named Sine-cosine optimization algorithm (SCA), Black widow optimization algorithm (BWOA), and Equilibrium optimizer (EO) were considered for determing optimal values of RF hyperparameters. The findings show that all developed systems faithfully represented the DF, with an R2 for the train and test data phases of better than 0.9539 and 0.9777, respectively. In two assessment and learning stages, EO - RF is found to be superior than BWOA - RF and SCA - RF. The outperformed model's performance (EO - RF) was superior to that of ANN (from literature) by raising the values of R2 and reducing the RMSE values. Considering the justifications, as well as the comparisons from metrics and Taylor diagram's findings, it could be found out that, although other RF models were equally reliable in predicting the the frost durability of RAC based on the durability factor (DF) value in cold climates, the developed EO - RF strategy excelled them all.

Service Deployment Strategy for Customer Experience and Cost Optimization under Hybrid Network Computing Environment

  • Ning Wang;Huiqing Wang;Xiaoting Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3030-3049
    • /
    • 2023
  • With the development and wide application of hybrid network computing modes like cloud computing, edge computing and fog computing, the customer service requests and the collaborative optimization of various computing resources face huge challenges. Considering the characteristics of network environment resources, the optimized deployment of service resources is a feasible solution. So, in this paper, the optimal goals for deploying service resources are customer experience and service cost. The focus is on the system impact of deploying services on load, fault tolerance, service cost, and quality of service (QoS). Therefore, the alternate node filtering algorithm (ANF) and the adjustment factor of cost matrix are proposed in this paper to enhance the system service performance without changing the minimum total service cost, and corresponding theoretical proof has been provided. In addition, for improving the fault tolerance of system, the alternate node preference factor and algorithm (ANP) are presented, which can effectively reduce the probability of data copy loss, based on which an improved cost-efficient replica deployment strategy named ICERD is given. Finally, by simulating the random occurrence of cloud node failures in the experiments and comparing the ICERD strategy with representative strategies, it has been validated that the ICERD strategy proposed in this paper not only effectively reduces customer access latency, meets customers' QoS requests, and improves system service quality, but also maintains the load balancing of the entire system, reduces service cost, enhances system fault tolerance, which further confirm the effectiveness and reliability of the ICERD strategy.

Adaptive Predictive Control using Multiple Models, Switching and Tuning

  • Giovanini Leonardo;Ordys Andrzej W.;Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.669-681
    • /
    • 2006
  • In this work, a new method of design adaptive controllers for SISO systems based on multiple models and switching is presented. The controller selects the model from a given set, according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a predictive control law that ensures the robust stability of the closed-loop system and achieves the best performance for the current operating point. At each sample the proposed control scheme identifies a set of linear models that best characterizes the dynamics of the current operating region. Then, it carries out an automatic reconfiguration of the controller to achieve the best possible performance whilst providing a guarantee of robust closed-loop stability. The results are illustrated by simulations a nonlinear continuous and stirred tank reactor.