• Title/Summary/Keyword: performance scalability

Search Result 646, Processing Time 0.023 seconds

A Dynamic Hashing Based Load Balancing for a Scalable Wireless Internet Proxy Server Cluster (확장성 있는 무선 인터넷 프록시 서버 클러스터를 위한 동적 해싱 기반의 부하분산)

  • Kwak, Hu-Keun;Kim, Dong-Seung;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.14A no.7
    • /
    • pp.443-450
    • /
    • 2007
  • Performance scalability and storage scalability become important in a large scale cluster of wireless internet proxy cache servers. Performance scalability means that the whole performance of the cluster increases linearly according as servers are added. Storage scalability means that the total size of cache storage in the cluster is constant, regardless of the number of cache servers used, if the whole cache data are partitioned and each partition is stored in each server, respectively. The Round-Robin based load balancing method generally used in a large scale server cluster shows the performance scalability but no storage scalability because all the requested URL data need to be stored in each server. The hashing based load balancing method shows storage scalability because all the requested URL data are partitioned and each partition is stored in each server, respectively. but, it shows no performance scalability in case of uneven pattern of client requests or Hot-Spot. In this paper, we propose a novel dynamic hashing method with performance and storage scalability. In a time interval, the proposed scheme keeps to find some of requested URLs allocated to overloaded servers and dynamically reallocate them to other less-loaded servers. We performed experiments using 16 PCs and experimental results show that the proposed method has the performance and storage scalability as different from the existing hashing method.

Impact of Segregation Layer on Scalability and Analog/RF Performance of Nanoscale Schottky Barrier SOI MOSFET

  • Patil, Ganesh C.;Qureshi, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the impact of segregation layer density ($N_{DSL}$) and length ($L_{DSL}$) on scalability and analog/RF performance of dopant-segregated Schottky barrier (DSSB) SOI MOSFET has been investigated in sub-30 nm regime. It has been found that, although by increasing the $N_{DSL}$ the increased off-state leakage, short-channel effects and the parasitic capacitances limits the scalability, the reduced Schottky barrier width at source-to-channel interface improves the analog/RF figures of merit of this device. Moreover, although by reducing the $L_{DSL}$ the increased voltage drop across the underlap length reduces the drive current, the increased effective channel length improves the scalability of this device. Further, the gain-bandwidth product in a common-source amplifier based on optimized DSSB SOI MOSFET has improved by ~40% over an amplifier based on raised source/drain ultrathin-body SOI MOSFET. Thus, optimizing $N_{DSL}$ and $L_{DSL}$ of DSSB SOI MOSFET makes it a suitable candidate for future nanoscale analog/RF circuits.

Computational Methods for On-Node Performance Optimization and Inter-Node Scalability of HPC Applications

  • Kim, Byoung-Do;Rosales-Fernandez, Carlos;Kim, Sungho
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.294-309
    • /
    • 2012
  • In the age of multi-core and specialized accelerators in high performance computing (HPC) systems, it is critical to understand application characteristics and apply suitable optimizations in order to fully utilize advanced computing system. Often time, the process involves multiple stages of application performance diagnosis and a trial-and-error type of approach for optimization. In this study, a general guideline of performance optimization has been demonstrated with two class-representing applications. The main focuses are on node-level optimization and inter-node scalability improvement. While the number of optimization case studies is somewhat limited in this paper, the result provides insights into the systematic approach in HPC applications performance engineering.

The Design and Development of a Onchain Game for Scalability Verification of Blockchain Platform (블록체인 플랫폼의 성능 및 확장성 검증을 위한 온체인 게임 설계 및 개발)

  • Jang, Kwang-Soo;Lee, Ook
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.253-263
    • /
    • 2020
  • Since the birth of the Ethereum in 2015, various decentralized applications (DApp) based on blockchain smart contract technology have appeared. However, CryptoKitty's case showed instability in terms of performance and scalability in real-world service environments. To solve this, a blockchain platform that developed a high transaction per second (TPS) has appeared, but there have been no environments and services to test it. Therefore, this paper intends to design and develop a game that can record the contents of all games on the chain and verify the performance and scalability of the blockchain platform through oversized transactions. The developed game generated a total of 6.3 million blocks and 8.9 million transactions through by 682 and verified the improved performance and scalability of the existing platform. Additionally, the maximum TPS was measured at 1,309 during the test period. In the future, it is expected that performance and scalability can be compared in a realistic environment through the method presented in this paper.

Large-Scale Integrated Network System Simulation with DEVS-Suite

  • Zengin, Ahmet
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.452-474
    • /
    • 2010
  • Formidable growth of Internet technologies has revealed challenging issues about its scale and performance evaluation. Modeling and simulation play a central role in the evaluation of the behavior and performance of the large-scale network systems. Large numbers of nodes affect simulation performance, simulation execution time and scalability in a weighty manner. Most of the existing simulators have numerous problems such as size, lack of system theoretic approach and complexity of modeled network. In this work, a scalable discrete-event modeling approach is described for studying networks' scalability and performance traits. Key fundamental attributes of Internet and its protocols are incorporated into a set of simulation models developed using the Discrete Event System Specification (DEVS) approach. Large-scale network models are simulated and evaluated to show the benefits of the developed network models and approaches.

Optimal Configuration of SVC for Satellite Broadcasting Service with Ku/Ka Bands

  • Luong, Ngoc Thuy Dung;Sohn, Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.188-191
    • /
    • 2010
  • The study investigated the optimal configuration of SVC (Scalable Video Coding) to apply to the satellite broadcasting service, and compared the performance of the SVC with that of the AVC (Advanced Video Coding). To get the optimal configuration, we analyzed the optimal bit rate allocation between the layers and the optimal scalability which requires the least bit rate for the required PSNR for various kinds of contents using JSVM. As a result of investigation, we found that the optimal bit rate allocation occurs when the bit rate of the base layer is minimum, and the spatial scalability shows the best performance. The performance of SVC is similar to that of AVC for spatial scalability, but it depends on contents.

  • PDF

A High-Performance Scalable ATM Switch Design by Integrating Time-Division and Space-Division Switch Architectures

  • Park, Young-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.48-55
    • /
    • 1997
  • Advances in VLSI technology have brought us completely new design principles for the high-performance switching fabrics including ATM switches. From a practical point of view, port scalability of ATM switches emerges as an important issue while complexity and performance of the switches have been major issues in the switch design. In this paper, we propose a cost-effective approach to modular ATM switch design which provides the good scalability. Taking advantages of both time-division and space-division switch architectures, we propose a practically implementable large scale ATM switch architecture. We present a scalable shared buffer type switch for a building block and its expansion method. In our design, a large scale ATM switch is realized by interconnecting the proposed shared buffer switches in three stages. We also present an efficient control mechanism of the shared buffers, synchronization method for the switches in each stage, and a flow control between stages. It is believed that the proposed approach will have a significant impact on both improving the ATM switch performance and enhancing the scalability of the switch with a new cost-effective scheme for handling the traffic congestion. We show that the proposed ATM switch provides an excellent performance and that its cell delay characteristic is comparable to output queueing which provides the best performance in cell delay among known approaches.

  • PDF

Performance and Scalability of OpenMP Programs on Chip-MultiThreading Server (칩 멀티쓰레딩 서버에서 OpenMP 프로그램의 성능과 확장성)

  • Lee Myung-Ho;Kim Yong-Kyu
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.137-146
    • /
    • 2006
  • Shared Memory Multiprocessor (SMP) systems adopting Chip-level MultiThreading (CMT) technology are becoming mainstream servers in commercial applications and High Performance Computining (HPC) applications as well. OpenMP has become the standard paradigm to parallelize applications for SMP mostly because of its ease of use. As the demand for more computing power in HPC applications is growing rapidly, obtaining high performance and scalability for these applications parallelized using OpenMP API's will become more important. In this paper, we study the performance and scalability of HPC applications parallelized using OpenMP, SPEC OMPL (standard OpenMP benchmark suite), on the Sun Fire E25K server which adopts CMT technology. We also study the effect of CMT on SPEC OMPL.

Minimizing the MOLAP/ROLAP Divide: You Can Have Your Performance and Scale It Too

  • Eavis, Todd;Taleb, Ahmad
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • Over the past generation, data warehousing and online analytical processing (OLAP) applications have become the cornerstone of contemporary decision support environments. Typically, OLAP servers are implemented on top of either proprietary array-based storage engines (MOLAP) or as extensions to conventional relational DBMSs (ROLAP). While MOLAP systems do indeed provide impressive performance on common analytics queries, they tend to have limited scalability. Conversely, ROLAP's table oriented model scales quite nicely, but offers mediocre performance at best relative to the MOLAP systems. In this paper, we describe a storage and indexing framework that aims to provide both MOLAP like performance and ROLAP like scalability by essentially combining some of the best features from both. Based upon a combination of R-trees and bitmap indexes, the storage engine has been integrated with a robust OLAP query engine prototype that is able to fully exploit the efficiency of the proposed storage model. Specifically, it utilizes an OLAP algebra coupled with a domain specific query optimizer, to map user queries directly to the storage and indexing framework. Experimental results demonstrate that not only does the design improve upon more naive approaches, but that it does indeed offer the potential to optimize both query performance and scalability.

Numerical Formula and Verification of Web Robot for Collection Speedup of Web Documents

  • Kim Weon;Kim Young-Ki;Chin Yong-Ok
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.1-10
    • /
    • 2004
  • A web robot is a software that has abilities of tracking and collecting web documents on the Internet(l), The performance scalability of recent web robots reached the limit CIS the number of web documents on the internet has increased sharply as the rapid growth of the Internet continues, Accordingly, it is strongly demanded to study on the performance scalability in searching and collecting documents on the web. 'Design of web robot based on Multi-Agent to speed up documents collection ' rather than 'Sequentially executing Web Robot based on the existing Fork-Join method' and the results of analysis on its performance scalability is presented in the thesis, For collection speedup, a Multi-Agent based web robot performs the independent process for inactive URL ('Dead-links' URL), which is caused by overloaded web documents, temporary network or web-server disturbance, after dividing them into each agent. The agents consist of four component; Loader, Extractor, Active URL Scanner and inactive URL Scanner. The thesis models a Multi-Agent based web robot based on 'Amdahl's Law' to speed up documents collection, introduces a numerical formula for collection speedup, and verifies its performance improvement by comparing data from the formula with data from experiments based on the formula. Moreover, 'Dynamic URL Partition algorithm' is introduced and realized to minimize the workload of the web server by maximizing a interval of the web server which can be a collection target.

  • PDF