• Title/Summary/Keyword: performance management system

Search Result 6,453, Processing Time 0.041 seconds

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

The Reserch on Actual Condition of Crime of Arson Which Occurs in Korea and Its Countermeasures (방화범죄의 실태와 그 대책 - 관심도와 동기의 다양화에 대한 대응 -)

  • Choi, Jong-Tae
    • Korean Security Journal
    • /
    • no.1
    • /
    • pp.371-408
    • /
    • 1997
  • This article is the reserch on actual condition of crime of arson which occurs in Korea and its countermeasures. The the presented problem in this article are that (1) we have generally very low rate concern about the crime of arson contrary to realistic problems of rapid increase of crime of arson (2) as such criminal motives became so diverse as to the economic or criminal purpose unlike characteristic and mental deficiency of old days, and to countermeasure these problems effectively it presentation the necessity of systemantic research. Based on analysis of reality of arson, the tendency of this arson in Korea in the ratio of increase is said to be higher than those in violence crime or general fire rate. and further its rate is far more greater than those of the U.S.A. and Japan. Arson is considered to be a method of using fire as crime and in case of presently residence to be the abject, it is a public offense crime which aqccompany fatality in human life. This is the well It now fact to all of us. And further in order to presentation to the crime of arson, strictness of criminal law (criminal law No, 164 and 169, and fire protection law No. 110 and 111) and classification of arsonist as felony are institutionary reinforced to punish with certainty of possibility, Therefore, as tendency of arson has been increased compared to other nations, it is necessary to supplement strategical policy to bring out overall concerns of the seriousness of risk and damage of arson, which have been resulted from the lack of understanding. In characteristics analysis of crime of arson, (1) It is now reveald that, in the past such crime rate appeared far more within the boundary of town or city areas in the past, presently increased rate of arsons in rural areas are far more than in the town or small city areas, thereby showing characteristics of crime of arson extending nation wide. (2) general timetable of arson shows that night more than day time rate, and reveald that is trait behavior in secrecy.(3) arsonists are usually arrested at site or by victim or report of third person(82,9%).Investigation activities or self surrenders rate only 11.2%. The time span of arrest is normally the same day of arson and at times it takes more than one year to arrest. This reveals its necessity to prepare for long period of time for arrest, (4) age rate of arson is in their thirties mostly as compared to homicide, robbery and adultery, and considerable numbers of arsons are in old age of over fifties. It reveals age rate is increased (5) Over half of the arsonists are below the junior high school (6) the rate of convicts by thier records is based on first offenders primarily and secondly more than 4 time convicts. This apparently shows necessity of effective correctional education policy for their social assimilation together with re-investigation of human education at the primary and secondary education system in thier life. The examples of motivation for arosnits, such as personal animosity, fury, monetary swindle, luscious purpose and other aims of destroying of proof, and other social resistance, violence including ways of threatening, beside the motives of individual defects, are diverse and arsonic suicide and specifically suicidal accompany together keenly manifested. When we take this fact with the criminal theory, it really reveals arsons of crime are increasing and its casualities are serious and a point as a way of suicide is the anomie theory of Durkheim and comensurate with the theory of that of Merton, Specifically in the arson of industrial complex, it is revealed that one with revolutionary motive or revolting motive would do the arsonic act. For the policy of prevention of arsons, professional research work in organizational cooperation for preventive activities is conducted in municipal or city wise functions in the name of Parson Taskforces and beside a variety of research institutes in federal government have been operating effectively to countermeasure in many fields of research. Franch and Sweden beside the U.S. set up a overall operation of fire prevention research funtions and have obtained very successful result. Japan also put their research likewise for countermeasure. In this research as a way of preventive fire policy, first, it is necessary to accomodate the legal preventitive activities for fire prevention in judicial side and as an administrative side, (1) precise statistic management of crime of arson (2) establishment of professional research functions or a corporate (3) improvement of system for cooperative structural team for investigation of fires and menpower organization of professional members. Secondly, social mentality in individual prospect, recognition of fires by arson and youth education of such effect, educational program for development and practical promotion. Thirdly, in view of environmental side, the ways of actual performance by programming with the establishment of cooperative advancement in local social function elements with administrative office, habitants, school facilities and newspapers measures (2) establishment of personal protection where weak menpowers are displayed in special fire prevention measures. These measures are presented for prevention of crime of arson. The control of crime and prevention shall be prepared as a means of self defence by the principle of self responsibility Specifically arsonists usually aims at the comparatively weak control of fire prevention is prevalent and it is therefore necessary to prepare individual facilities with their spontaneous management of fire prevention instead of public municipal funtures of local geverment. As Clifford L. Karchmer asserted instead of concerns about who would commit arson, what portion of area would be the target of the arson. It is effective to minister spontaveously the fire prevention measure in his facility with the consideration of characteristics of arson. On the other hand, it is necessary for the concerned personnel of local goverment and groups to distribute to the local society in timely manner for new information about the fire prevention, thus contribute to effective result of fire prevention result. In consideration of these factors, it is inevitable to never let coincide with the phemonemon of arsons in similar or mimic features as recognized that these could prevail just an epedemic as a strong imitational attitude. In processing of policy to encounter these problems, it is necessary to place priority of city policy to enhancement of overall concerns toward the definitive essense of crime of arson.

  • PDF

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

A Hybrid SVM Classifier for Imbalanced Data Sets (불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델)

  • Lee, Jae Sik;Kwon, Jong Gu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2013
  • We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.

A Basic Study for Sustainable Analysis and Evaluation of Energy Environment in Buildings : Focusing on Energy Environment Historical Data of Residential Buildings (빌딩의 지속가능 에너지환경 분석 및 평가를 위한 기초 연구 : 주거용 건물의 에너지환경 실적정보를 중심으로)

  • Lee, Goon-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.262-268
    • /
    • 2017
  • The energy consumption of buildings is approximately 20.5% of the total energy consumption, and the interest in energy efficiency and low consumption of the building is increasing. Several studies have performed energy analysis and evaluation. Energy analysis and evaluation are effective when applied in the initial design phase. In the initial design phase, however, the energy performance is evaluated using general level information, such as glazing area and surface area. Therefore, the evaluation results of the detailed design stage, which is based on the drawings, including detailed information of the materials and facilities, will be different. Thus far, most studies have reported the analysis and evaluation at the detailed design stage, where detailed information about the materials installed in the building becomes clear. Therefore, it is possible to improve the accuracy of the energy environment analysis if the energy environment information generated during the life cycle of the building can be established and accurate information can be provided in the analysis at the initial design stage using a probability / statistical method. On the other hand, historical data on energy use has not been established in Korea. Therefore, this study performed energy environment analysis to construct the energy environment historical data. As a result of the research, information classification system, information model, and service model for acquiring and providing energy environment information that can be used for building lifecycle information of buildings are presented and used as the basic data. The results can be utilized in the historical data management system so that the reliability of analysis can be improved by supplementing the input information at the initial design stage. If the historical data is stacked, it can be used as learning data in methods, such as probability / statistics or artificial intelligence for energy environment analysis in the initial design stage.

Optimization of Image Tracking Algorithm Used in 4D Radiation Therapy (4차원 방사선 치료시 영상 추적기술의 최적화)

  • Park, Jong-In;Shin, Eun-Hyuk;Han, Young-Yih;Park, Hee-Chul;Lee, Jai-Ki;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • In order to develop a Patient respiratory management system includinga biofeedback function for4-dimentional radiation therapy, this study investigated anoptimal tracking algorithmfor moving target using IR (Infra-red) camera as well as commercial camera. A tracking system was developed by LabVIEW 2010. Motion phantom images were acquired using a camera (IR or commercial). After image process were conducted to convert acquired image to binary image by applying a threshold values, several edge enhance methods such as Sobel, Prewitt, Differentiation, Sigma, Gradient, Roberts, were applied. The targetpattern was defined in the images, and acquired image from a moving targetwas tracked by matching pre-defined tracking pattern. During the matching of imagee, thecoordinateof tracking point was recorded. In order to assess the performance of tracking algorithm, the value of score which represents theaccuracy of pattern matching was defined. To compare the algorithm objectively, we repeat experiments 3 times for 5 minuts for each algorithm. Average valueand standard deviations (SD) of score were automatically calculatedsaved as ASCII format. Score of threshold only was 706, and standard deviation was 84. The value of average and SD for other algorithms which combined edge detection method and thresholdwere 794, 64 in Sobel, 770, 101 in Differentiation, 754, 85 in Gradient, 763, 75 in Prewitt, 777, 93 in Roberts, and 822, 62 in Sigma, respectively. According to score analysis, the most efficient tracking algorithm is the Sigma method. Therefore, 4-dimentional radiation threapy is expected tobemore efficient if threshold and Sigma edge detection method are used together in target tracking.

An Analysis of the Roles of Experience in Information System Continuance (정보시스템의 지속적 사용에서 경험의 역할에 대한 분석)

  • Lee, Woong-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.4
    • /
    • pp.45-62
    • /
    • 2011
  • The notion of information systems (IS) continuance has recently emerged as one of the most important research issues in the field of IS. A great deal of research has been conducted thus far on the basis of theories adapted from various disciplines including consumer behaviors and social psychology, in addition to theories regarding information technology (IT) acceptance. This previous body of knowledge provides a robust research framework that can already account for the determination of IS continuance; however, this research points to other, thus-far-unelucidated determinant factors such as habit, which were not included in traditional IT acceptance frameworks, and also re-emphasizes the importance of emotion-related constructs such as satisfaction in addition to conscious intention with rational beliefs such as usefulness. Experiences should also be considered one of the most important factors determining the characteristics of information system (IS) continuance and the features distinct from those determining IS acceptance, because more experienced users may have more opportunities for IS use, which would allow them more frequent use than would be available to less experienced or non-experienced users. Interestingly, experience has dual features that may contradictorily influence IS use. On one hand, attitudes predicated on direct experience have been shown to predict behavior better than attitudes from indirect experience or without experience; as more information is available, direct experience may render IS use a more salient behavior, and may also make IS use more accessible via memory. Therefore, experience may serve to intensify the relationship between IS use and conscious intention with evaluations, On the other hand, experience may culminate in the formation of habits: greater experience may also imply more frequent performance of the behavior, which may lead to the formation of habits, Hence, like experience, users' activation of an IS may be more dependent on habit-that is, unconscious automatic use without deliberation regarding the IS-and less dependent on conscious intentions, Furthermore, experiences can provide basic information necessary for satisfaction with the use of a specific IS, thus spurring the formation of both conscious intentions and unconscious habits, Whereas IT adoption Is a one-time decision, IS continuance may be a series of users' decisions and evaluations based on satisfaction with IS use. Moreover. habits also cannot be formed without satisfaction, even when a behavior is carried out repeatedly. Thus, experiences also play a critical role in satisfaction, as satisfaction is the consequence of direct experiences of actual behaviors. In particular, emotional experiences such as enjoyment can become as influential on IS use as are utilitarian experiences such as usefulness; this is especially true in light of the modern increase in membership-based hedonic systems - including online games, web-based social network services (SNS), blogs, and portals-all of which attempt to provide users with self-fulfilling value. Therefore, in order to understand more clearly the role of experiences in IS continuance, analysis must be conducted under a research framework that includes intentions, habits, and satisfaction, as experience may not only have duration-based moderating effects on the relationship between both intention and habit and the activation of IS use, but may also have content-based positive effects on satisfaction. This is consistent with the basic assumptions regarding the determining factors in IS continuance as suggested by Oritz de Guinea and Markus: consciousness, emotion, and habit. The principal objective of this study was to explore and assess the effects of experiences in IS continuance, with special consideration given to conscious intentions and unconscious habits, as well as satisfaction. IN service of this goal, along with a review of the relevant literature regarding the effects of experiences and habit on continuous IS use, this study suggested a research model that represents the roles of experience: its moderating role in the relationships of IS continuance with both conscious intention and unconscious habit, and its antecedent role in the development of satisfaction. For the validation of this research model. Korean university student users of 'Cyworld', one of the most influential social network services in South Korea, were surveyed, and the data were analyzed via partial least square (PLS) analysis to assess the implications of this study. In result most hypotheses in our research model were statistically supported with the exception of one. Although one hypothesis was not supported, the study's findings provide us with some important implications. First the role of experience in IS continuance differs from its role in IS acceptance. Second, the use of IS was explained by the dynamic balance between habit and intention. Third, the importance of satisfaction was confirmed from the perspective of IS continuance with experience.

Development of Marine Virus-like Particles Live/Dead Determination Method for the Performance Evaluation of Ballast Water Treatment System (선박평형수처리장치 성능 평가를 위한 해양 바이러스 생사판별 방법 개발)

  • Hyun, Bonggil;Woo, Joo-Eun;Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Bae, Mi-Kyung;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.431-438
    • /
    • 2021
  • To prepare more stringent regulations for USCG Phase II ballast water management, this study investigated the staining efficiency of SYBR Green I(SGI) and SYBR Gold(SG) on the virus-like particle (VLP). A dye with high staining efficiency was applied to the treated water that was passed through the ballast water treatment system (BWTS). VLP staining was observed most clearly under the 100-fold and 200-fold dilution of the stock solution when the volume of filtered samples was 0.5 mL to 2 mL. The staining efficiency of SGI and SG did not show a significant difference. On the other hand, the green fluorescence of viruses in the sample stained with SGI was more pronounced than in the samples stained with SG (expressed yellow fluorescence), making it easier to observe. The abundance of VLP in the test water and control water treatments that did not pass through the two types of BWTS (electrolysis type, UV + electrolysis type) was approximately 109 - 1010 VLP 100 mL-1. In contrast, no stained VLP was observed in the treated water treatments. Moreover, SGI was confirmed to be effectively stained under various salinity conditions, including seawater, brackish water, and freshwater. Further verification tests and development of staining methods under various BWTS are required, but the SGI staining method is believed to be a good alternative to the VLP live/dead determination of the USCG Phase II type approval test.

The Study on Improvement of the Digital Transformation of Small and Medium-Sized Manufacturing Industries through Foreign Countries (주요국 정책을 통한 중소 제조기업의 디지털 전환 추진 방향 모색)

  • An, Jung-in
    • Journal of Venture Innovation
    • /
    • v.5 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • As the 4th industrial revolution progresses, foreign countries are promoting smart manufacturing innovation through digital transformation as a priority task early on to secure a competitive edge in the manufacturing industry. In response, the Korean government is also promoting a policy to enhance the competitiveness of small and medium-sized manufacturing companies by promoting digital transformation in the corporate sector to meet the global trend of the 4th industrial revolution era. Manufacturing powerhouses such as Germany and Japan see manufacturing as a key sector in digital transformation and are leading related policies, while emerging countries such as China are also promoting manufacturing innovation strategies such as building digital infrastructure and creating a digital innovation ecosystem. Korea is promoting the 'Korean-style smart factory dissemination and expansion strategy' by transforming Germany's manufacturing innovation strategy for smart factory supply to suit the domestic situation. However, the policy to supply smart factories so far has been conducted with support from individual companies under the leadership of the government, and most of the smart factories are at the basic level, and it is evaluated that there are limitations such as the lack of manpower to operate smart factories. In addition, while the current policy focuses on expanding the supply of smart factories in SMEs, it is necessary to establish a smart manufacturing system through linkages between large and small businesses in order to achieve the original goal of establishing a smart manufacturing system. Therefore, it can be said that from the standpoint of small and medium-sized enterprises (SMEs), who are consumers of smart factories, it can be said that the digital transformation policy can achieve the expected results only when appropriate incentives are provided for the introduction of smart factories in a situation where management resources such as funds, technology, and human resources are lacking. In addition, it is judged that the uncertainty of the performance of digital investment always exists, and as long as large and small companies are maintained as an ecosystem of delivery and subcontracting, there is very little incentive for small and medium-sized manufacturing companies to voluntarily invest in or advance digital transformation. Therefore, the digital transformation policy of small and medium-sized manufacturing companies in the future has practical significance in that it suggests that there is a need to seek ways to attract SMEs' digital-related voluntary investment.